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Abstract. The Plancherel Theorem asserts the equality of the ZΛnorms
(with respect to Haar measure) of a function / on a locally compact abelian
group G and of its Fourier transform /. The Hausdorff-Young inequality
gives conditions on p and q under which \\f\\q ^ 11/lip. We consider a dif-
ferent variant: we place a measure μ on G, a measure w on G, and examine
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Our main results show that it is enough to consider the case in which w is
equivalent to Haar measure, and we give a condition on w which is necess-
ary and sufficient for the inequality to hold for every μ ^ 0 with \\μ\\ ^ 1.

Let G be a locally compact abelian group and let G be its dual group.
We denote the Fourier transform of a function / on G by /. In this note
we shall consider the inequality
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which we require to hold for all functions / in the space <5Γ{G) of con-
tinuous functions of compact support on G, for some positive measures μ
on G and w on G.

Inequalities of this kind have a long history (see, for example [2]).
They have appeared more recently because of their importance in the
solution of multiplier problems for weighted Lp-spaces ([5], in particular
a remark on page 50, and [6], especially Lemmas 2.1 and 2.2). These
authors usually consider cases in which one of the groups G and G is the
circle group and the other the integers, though in his Theorem 3b in [5],
Hirschman quotes a result for Rn. Work on general groups has usually
yielded only abstract characterizations of multipliers [1], and we hope
that a study of the inequality (1) might be a first step to some more
concrete representations.

Our principal results are as follows. First, if the inequality (1) holds
for some non-zero measure μ, then the Haar measure m of G must be
absolutely continuous with respect to w. Moreover, the inequality remains


