ON AUTOMORPHISM GROUPS OF II,-FACTORS

Shôichirô Sakai*

(Received August 20, 1973)

1. Introduction. In the present paper, we shall study groups of *-automorphisms on II₁-factors, using various topologies.

One of the main purposes is to attack the problem whether every II_1 -factor has outer *-automorphisms. In [7], we proved that the symmetry on $M \otimes M$ is outer for every non-atomic factor M; therefore, it is very plausible that every II_1 -factor may have outer *-automorphisms.

Now let M be a II_1 -factor with the separable predual. Let C(M) (resp. H(M) and T(M)) be the set of all central (resp. hyper-central and trivial-central) sequences in M. If $H(M) \subseteq C(M)$, then by McDuff's theorem [2], M is *-isomorphic to $M \otimes U$, where U is the hyperfinite II_1 -factor, so that M has outer *-automorphisms.

Among other things, we shall show that if $T(M) \subseteq C(M)$, then M has outer *-automorphisms (Corollary 7).

2. Theorems. Let M be a W^* -algebra, and let $A^*(M)$ be the group of all *-automorphisms on M. Let B(M) be the Banach algebra of all bounded linear operators on M and let M_* be the predual of M. By the standard theory of Banach spaces, B(M) is the dual Banach space of $M \bigotimes_{\tau} M_*$, where γ is the greatest cross norm. We shall consider the topology $\sigma(B(M), M \bigotimes_{\tau} M_*)$ on $A^*(M)$. We call this topology on $A^*(M)$ the weak *-topology and denote it by w^* .

PROPOSITION 1. Suppose that a directed set (ρ_{α}) of elements in $A^*(M)$ converges to $\rho_0 \in A^*(M)$ in the w^* -topology; then for any $a \in M$, $(\rho_{\alpha}(a))$ converges to $\rho_0(a)$ in the $s(M, M_*)$ -topology.

PROOF. Let M_* be the set of all normal positive linear functionals on M; then for $\varphi \in M_*$,

$$egin{aligned} & arphi((
ho_{lpha}(a)-
ho_{0}(a))^{*}(
ho_{lpha}(a)-
ho_{0}(a))) = arphi(
ho_{lpha}(a^{*}a)+
ho_{0}(a^{*}a)-
ho_{lpha}(a^{*})
ho_{0}(a) \ & -
ho_{0}(a^{*})
ho_{lpha}(a))
ightarrow arphi(
ho_{0}(a^{*}a)+
ho_{0}(a^{*}a)-
ho_{0}(a^{*})
ho_{0}(a)-
ho_{0}(a^{*})
ho_{0}(a)) = 0 \ . \ & ext{Similarly,} \end{aligned}$$

$$\varphi((\rho_{\alpha}(a)-\rho_{0}(a))(\rho_{\alpha}(a)-\rho_{0}(a))^{*})\rightarrow 0$$
.

^{*)} This research is supported by National Science Foundation.