A NOTE ON THE VON NEUMANN ALGEBRA WITH A CYCLIC AND SEPARATING VECTOR

YASUHIDE MIURA

(Received November 11, 1975)

Let *M* be a von Neumann algebra on a Hilbert space *H* with a cyclic and separating vector. If, for some cyclic and separating vector ξ_0 in *H* for *M*,

$$M\xi_0 = M'\xi_0 , \qquad (*)$$

then we shall call that M has the property (J).

Note that *M* satisfying the equality (*) for ξ_0 does not always imply for the other cyclic and separating vector.

In [Theorem 1] we show that M has the property (J) if and only if M is a finite von Neumann algebra. In terms of the Hilbert algebra, we can consider $M\xi_0$ as an achieved left Hilbert algebra \mathfrak{A} with the product: $(x\xi_0)(y\xi_0) = xy\xi_0$, and the involution: $S(x\xi_0) = x^*\xi_0$, $x, y \in M$, and $M'\xi_0$ as the right Hilbert algebra \mathfrak{A}' of \mathfrak{A} . (see [2], [3]) The analysis in this paper may be the special case of the characterization of the type of the left von Neumann algebra $\mathfrak{A}(\mathfrak{A})$ associated to the achieved left Hilbert algebra \mathfrak{A} under the condition $\mathfrak{A} = \mathfrak{A}'$ as a set. Without difficulty, we can prove that an achieved left Hilbert algebra \mathfrak{A} is equal to \mathfrak{A}' as a set if and only if \mathfrak{A} is a Tomita algebra.

In [Theorem 2] we shall give a characterization of a finite von Neumann algebra via the Radon-Nikodym theorem for the state. We mainly refer [1] and [2].

Now, we state here that if M is finite, then M has the property (J).

In fact, let ξ_0 be a cyclic and separating trace vector in H for M. Then we have

$$||S(x\xi_0)||^2 = ||x^*\xi_0||^2 = (xx^*\xi_0|\xi_0) = (x^*x\xi_0|\xi_0) = ||x\xi_0||^2$$
 ,

for all x in M. Therefore $M\xi_0$ is a uni-modular Hilbert algebra. From [2] Cor. 10.1, we have $M\xi_0 = M'\xi_0$.

Now we need the following lemma to prove [Theorem 1].

LEMMA (cf. [1] Chap. I §1 ex. 5). Suppose that M is a von Neumann algebra on a Hilbert space H such that $M\xi_0 = M'\xi_0$ for a cyclic and separating vector ξ_0 in H, that is, for any element x in M, there exists