TOEPLITZ OPERATORS ON STRONGLY PSEUDOCONVEX DOMAINS IN STEIN SPACES

HAJIME SATO AND KÔZÔ YABUTA

(Received December 15, 1976)

0. Introduction. In this paper we study the C^* -algebra generated by the Toeplitz operators defined on strongly pseudoconvex domains in normal Stein spaces. We show that there exist short exact sequences of *-algebras which give elements of Ext. defined by Brown-Douglas-Fillmore ([4]).

Let Ω be a strongly pseudoconvex domain in a normal Stein space M (with or without singularities). Suppose that Ω has a volume form. Let $L^2(\Omega)$ (resp. $L^2(\partial\Omega)$) be the square integrable functions on Ω (resp. on $\partial\Omega$) and let $H^2(\Omega)$ (resp. $H^2(\partial\Omega)$) be the holomorphic square integrable functions on Ω (resp. be the closure of the C^{∞} -functions on $\partial\Omega$ which are extendible to holomorphic functions in Ω). Let

$$\Pi: L^{2}(\Omega)) \longrightarrow H^{2}(\Omega)$$

(or $\Pi: L^{2}(\partial\Omega) \longrightarrow H^{2}(\partial\Omega)$)

be the orthogonal projection.

For any topological space X, we denote by C(X) the Banach algebra of all complex valued continuous functions on X, endowed with supremum norm.

For $\phi \in C(\overline{\Omega})$ (resp. $\phi \in C(\partial \Omega)$), we define the Toeplitz operator

$$\begin{split} T_{\phi}[\mathcal{Q}] \colon H^{\mathfrak{z}}(\mathcal{Q}) & \longrightarrow H^{\mathfrak{z}}(\mathcal{Q}) \\ (\text{resp. } T_{\phi}[\partial \mathcal{Q}] \colon H^{\mathfrak{z}}(\partial \mathcal{Q}) & \longrightarrow H^{\mathfrak{z}}(\partial \mathcal{Q})) \end{split}$$

by $T_{\phi}(f) = \Pi(\phi \cdot f)$.

Let $\mathscr{T}(\Omega)$ (resp. $\mathscr{T}(\partial\Omega)$) denote the C^{*}-algebra generated by the operators T_{ϕ} for all ϕ in $C(\overline{\Omega})$ (resp. $C(\partial\Omega)$). Let us define a mapping

$$\xi: C(\bar{\Omega}) \to \mathscr{T}(\Omega)$$

(resp. $C(\partial \Omega) \to \mathscr{T}(\partial \Omega)$)

by $\xi \phi = T_{\phi}$, then ξ is contractive and *-linear. For any Hilbert space H, we denote by $\mathscr{L}(H)$ the C*-algebra of all bounded linear operators on H, by $\mathscr{L}\mathscr{C}(H)$ the closed ideal of compact operators on H.

Our main results are as follows.