THE FIRST EIGENVALUE OF THE LAPLACIAN ON SPHERES

Shûkichi Tanno

(Received April 25, 1978, revised May 19, 1978)

1. Introduction. Let (S^2, h) be a 2-dimensional sphere with metric h, and let $\lambda_0 = 0 < \lambda_1 = \lambda_1(h) \leq \lambda_2 \leq \cdots$ be eigenvalues of the Laplacian Δ on (S^2, h) acting on smooth functions. J. Hersch [3] showed that

$$(*)$$
 $1/\lambda_1 + 1/\lambda_2 + 1/\lambda_3 \geq (3/8\pi) \mathrm{Vol}(S^2, h)$

holds, and in particular

(**) $\lambda_1(h) \operatorname{Vol}(S^2, h) \leq 8\pi$,

where $Vol(S^2, h)$ denotes the volume of S^2 with respect to h. Equality in (*) or (**) holds if and only if h is a constant curvature metric.

M. Berger [1] showed that (*) cannot be generalized for $(S^m, h), m \ge 3$. With respect to (**), M. Berger [1] posed a problem: Let M be a compact smooth manifold; then does there exist a constant k(M) depending only on M such that the first eigenvalue $\lambda_1(h)$ of the Laplacian satisfies

$$(***) \qquad \qquad \lambda_1(h) \operatorname{Vol}(M, h)^{2/m} \leq k(M)$$

for any Riemannian metric h?

H. Urakawa [5] showed the following: Let G be a compact connected Lie group with a non-trivial commutator subgroup; then there exists a family of left invariant Riemannian metrics g(t) $(0 < t < \infty)$ on G such that

$$(****) egin{array}{cccc} \lambda_1(g(t)) o\infty & ext{ as } t o\infty ext{ ,} \ \lambda_1(g(t)) o0 & ext{ as } t o0 \end{cases}$$

and Vol(G, g(t)) = constant. In particular, since SU(2) is diffeomorphic to S^3 , there exists no constant $k(S^3)$ for a 3-dimensional sphere S^3 such that (***) holds.

The purpose of this paper is to prove that for any odd dimensional sphere S^{2n+1} there exists no constant $k(S^{2n+1})$ such that (***) holds. Namely we show the following.

THEOREM. Any odd dimensional sphere S^{2n+1} , $n \ge 1$, admits a family of Riemannian metrics g(t) $(0 < t < \infty)$ such that the first