Tôhoku Math. Journ. 31 (1979), 549-552.

CHANGES OF LAW, MARTINGALES AND THE CONDITIONED SQUARE FUNCTION

Norihiko Kazamaki

(Received December 26, 1978)

Let (Ω, F, P) be a complete probability space, given an increasing sequence (F_n) of sub σ -fields of F such that $F = \bigvee_{n \ge 0} F_n$. If $f = (f_n, F_n)$ is a martingale with difference sequence $d = (d_n)_{n\ge 1}$, we shall set $f^* = \sup_{n\ge 0} |f_n|$, $S(f) = (\sum_{n=1}^{\infty} d_n^2)^{1/2}$ and $s(f) = (\sum_{n=1}^{\infty} E[d_n^2|F_{n-1}])^{1/2}$. Let us assume that $f_0 = 0$. The operator s(f), which is not of matrix type, is called the conditioned square function. It was studied by Burkholder and Gundy [3]. Let $s_n(f) = (\sum_{k=1}^n E[d_k^2|F_{k-1}])^{1/2}$. Clearly, $s_n(f)$ is F_{n-1} measurable. Throughout the paper, we fix a BMO-martingale $M_n = \sum_{k=1}^n m_k$, $M_0 = 0$ such that $-1 + \delta < m_k$, $(k \ge 1)$ for some constant δ with $0 < \delta \le 1$, and consider the process Z given by the formula $Z_n = \prod_{k=1}^n (1 + m_k)$, $Z_0 = 1$. Z is a positive uniformly integrable martingale which satisfies the condition

$$(A_{p}) Z_{n} E[Z_{\infty}^{-1/(p-1)} | F_{n}]^{p-1} \leq C_{p}, \quad n \geq 0$$

for some p > 1; see [6]. As $Z_{\infty} > 0$ a.s., the weighted probability measure $d\hat{P} = Z_{\infty}dP$ is equivalent to dP. Note that for every \hat{P} -integrable random variable Y

 $\hat{E}[Y|F_n] = E[Z_{\infty}Y|F_n]/Z_n$ a.s., under dP and $d\hat{P}$,

where \vec{E} denotes the expectation over Ω with respect to $d\vec{P}$.

Our aim is to prove the following:

THEOREM. Let
$$0 . Then the inequality$$

(1)
$$\hat{E}[(f^*)^p] \leq c_p \hat{E}[s(f)^p]$$

is valid for all martingales $f = (f_n)$.

Furthermore, if $2 \leq p < \infty$ and Z satisfies the (A_p) condition, then we have

(2)
$$\widehat{E}[s(f)^{p}] \leq C_{p} \sup_{n\geq 0} \widehat{E}[|f_{n}|^{p}].$$

Here, the choice of c_p and C_p depends only on p.

This result is well-known for the case where $Z \equiv 1$; see Theorem 5.3 of [3]. To prove the theorem, we need several lemmas, which will