HOLOMORPHIC FAMILIES OF RIEMANN SURFACES AND TEICHMÜLLER SPACES II

Applications to the uniformization of algebraic surfaces and the compactification of two dimensional Stein manifolds

Yoichi Imayoshi

(Received July 19, 1978, revised February 23, 1979)

Introduction. Let \bar{S} be a two dimensional complex manifold and let C be a non-singular one dimensional analytic subset of $\overline{\mathscr{S}}$ or an empty set. Denote by D the unit disc $|t|<1$ and by D^{*} the punctured unit disc $0<|t|<1$ in the complex t-plane. We assume that a proper holomorphic mapping $\bar{\pi}: \bar{S} \rightarrow D^{*}$ satisfies the following two conditions;

1) $\bar{\pi}$ is of maximal rank at every point of $\overline{\mathscr{S}}$, and
2) by setting $\mathscr{S}=\bar{S}-C$ and $\pi=\bar{\pi} \mid \mathscr{S}$, the fibre $S_{t}=\pi^{-1}(t)$ of \mathscr{S} over each $t \in D^{*}$ is an irreducible analytic subset of \mathscr{S} and is of fixed finite type (g, n) with $2 g-2+n>0$ as a Riemann surface, where g is the genus of S_{t} and n is the number of punctures of S_{t}. We call such a triple (\mathscr{S}, π, D^{*}) a holomorphic family of Riemann surfaces of type (g, n) over D^{*}. We also say that \mathscr{S} has a holomorphic fibration $\left(\mathscr{S}, \pi, D^{*}\right)$ of type (g, n).

Our main problem is to construct a completion of (\mathscr{C}, π, D^{*}) canonically in such a way that the central fibre is a Riemann surface (possibly with nodes) of the same type (g, n) modulo a finite group of automorphisms.

As a continuation of the preceeding paper [6], we treat the completion of (\mathscr{S}, π, D^{*}) in the first half of this paper. For a holomorphic family (\mathscr{S}, π, D^{*}) of Riemann surfaces of type (g, n) with $2 g-2+n>0$, we regard the fibre S_{t} over $t \in D^{*}$ as a point $\Phi(t)$ in a Teichmüller space. It should be noted that, in general, Φ is a multi-valued analytic mapping. In §1 and §2, we recall terminologies and notations in [6]. In §3, we study the behavior of Φ as t tends to zero. In §4, using the result of $\S 3$, we canonically construct a completion $(\hat{\mathscr{S}}, \hat{\pi}, D)$ of $\left(\mathscr{S}, \pi, D^{*}\right)$ and, in $\S 5$, we prove an extension theorem for a holomorphic mapping F of \mathscr{S} into $\hat{\mathscr{S}}$ with $\pi=\hat{\pi} \circ F$.

In the second half of this paper, as applications of the above results,

