ALMOST SURE INVARIANCE PRINCIPLES FOR LACUNARY TRIGONOMETRIC SERIES

SHIGERU TAKAHASHI

(Received February 20, 1978)

1. Introduction. In this note let $\{n_m\}$ be a sequence of positive integers satisfying the gap condition

$$(1.1) n_{m+1}/n_m > 1 + cm^{-\alpha} (c > 0 \text{ and } 0 \le \alpha \le 1/2),$$

and $\{a_m\}$ be a sequence of positive numbers such that

$$\{A_k = \left(2^{-1}\sum_{m=1}^k a_m^2
ight)^{1/2} o + \infty \; , \ a_k = O(A_k k^{-lpha} (\log A_k)^{-eta}) \; , \qquad eta > 1/2 \; , \qquad ext{as} \quad k o + \infty \; .$$

Further, we put

$$\xi_{\it m}(\omega) = a_{\it m} \cos 2\pi (n_{\it m}\omega + \alpha_{\it m}) \quad {\rm and} \quad T_{\it k} = \sum_{\it m=1}^{\it k} \, \xi_{\it m} \; ,$$

where $\{\alpha_m\}$ is a sequence of arbitrary real numbers, and consider ξ_m 's as random variables on a probability space $([0, 1), \mathcal{F}, P)$ where \mathcal{F} is the σ -field of all Borel sets on [0, 1) and P is the Lebesgue measure on \mathcal{F} . Then we write, for $\omega \in [0, 1)$ and $t \ge 0$,

$$S(t) = S(t, \omega) = T_{\scriptscriptstyle k}(\omega)$$
 , if $A_{\scriptscriptstyle k}^{\scriptscriptstyle 2} \leq t < A_{\scriptscriptstyle k+1}^{\scriptscriptstyle 2}$,

for $k \ge 0$, where we put $A_0 = 0$ and $T_0 = 0$.

The purpose of the present paper is to prove the following.

THEOREM. Without changing the distribution of $\{S(t), t \geq 0\}$ we can redefine the process $\{S(t), t \geq 0\}$ on a richer probability space together with standard Brownian motion $\{X(t), t \geq 0\}$ such that

$$S(t) = X(t) + o(t^{1/2})$$
 a.s. as $t \to +\infty$.

Using the almost sure limiting behavior of $\{X(t), t \geq 0\}$ and the above theorem we can 'deduce the corresponding limiting properties of $\{S(t), t \geq 0\}$ or $\{T_k(\omega)\}$. For example we can obtain the following

COROLLARY (cf. [3]). Under the conditions (1.1) and (1.2) we have, for a.e. ω ,