A FIXED POINT THEOREM AND ITS APPLICATION IN ERGODIC THEORY

Dedicated to Professor Taro Yoshizawa on his sixtieth birthday
Andrzej Lasota

(Received August 23, 1979)

The purpose of this paper is to prove a simple fixed point theorem in Banach spaces, and to show its application in ergodic theory. The theorem asserts the existence of a unique fixed point for affine transformations and the convergence of successive approximations to the fixed point. In the special case of linear operators in L^{1} generated by point-to-point nonsingular transformations, this fixed point theorem demonstrates the existence and uniqueness of invariant measures and the exactness of corresponding measurable dynamical systems. The theorem thus gives a new tool for proving the exactness of some measurable endomorphisms.

The paper is divided into four parts. In Section 1 an abstract version of the fixed point theorem is proved. From the formal point of view it remembles some known results of Edelstein [1]. The proof, however, is based on ideas due to Pianigiani and Yorke [7]. Section 2 contains the specialization of the fixed point theorem to the space L^{1}. In Section 3 the general theory is examined in the case of expanding mappings of differentiable manifolds and a new simpler proof of the well known Krzyżewski-Szlenk theorem [5] is presented. In the proof once again the ideas of Pianigiani and Yorke are used. Finally, Section 4 is devoted to the study of a class of dynamical systems generated by piecewise convex transformations.

1. Fixed point theorem. Let $E,\| \|$ be a Banach space. A closed convex set $C \subset E$ is said to be imbedded in $V(V \subset E)$ if for each two different points $x_{1}, x_{2} \in C$ the closed interval $[0,1]$ is contained in the interior of the set $\left\{\lambda \in R: \lambda x_{1}+(1-\lambda) x_{2} \in V\right\}$. The distance between a nonempty set $C \subset E$ and a point $x \in E$ is defined, as usual by

$$
\rho(x, C)=\inf \{\|x-y\|: y \in C\}
$$

A sequence $\left\{x_{n}\right\} \subset E$ converges to $C \quad\left(x_{n} \rightarrow C\right)$ if $\lim _{n} \rho\left(x_{n}, C\right)=0$. In particular $x_{n} \rightarrow x_{0}$ always stands for $\left\|x_{n}-x_{0}\right\| \rightarrow 0$.

