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The purpose of this paper is to prove a simple fixed point theorem
in Banach spaces, and to show its application in ergodic theory. The
theorem asserts the existence of a unique fixed point for affine transfor-
mations and the convergence of successive approximations to the fixed
point. In the special case of linear operators in L1 generated by point-
to-point nonsingular transformations, this fixed point theorem demon-
strates the existence and uniqueness of invariant measures and the
exactness of corresponding measurable dynamical systems. The theorem
thus gives a new tool for proving the exactness of some measurable
endomorphisms.

The paper is divided into four parts. In Section 1 an abstract version
of the fixed point theorem is proved. From the formal point of view
it remembles some known results of Edelstein [1]. The proof, however,
is based on ideas due to Pianigiani and Yorke [7]. Section 2 contains
the specialization of the fixed point theorem to the space ZΛ In Section
3 the general theory is examined in the case of expanding mappings of
differentiable manifolds and a new simpler proof of the well known
Krzyzewski-Szlenk theorem [5] is presented. In the proof once again the
ideas of Pianigiani and Yorke are used. Finally, Section 4 is devoted to
the study of a class of dynamical systems generated by piecewise convex
transformations.

1. Fixed point theorem. Let E, \\ || be a Banach space. A closed
convex set C(zE is said to be imbedded in V (VaE) if for each two
different points xlf x2eC the closed interval [0, 1] is contained in the
interior of the set {XeR: Xxx + (1 — λ)x2e V}. The distance between a
nonempty set C czE and a point x e E is defined, as usual by

p(x,C) = mf{\\x-y\\:yeC}.

A sequence {xn} c E converges to C (xn —• C) if urn,, p(xn, C) = 0. In

part icular xn—> xQ always s tands for \\xn — xQ\\ - + 0 .


