REAL ANALYTIC SL(n, R) ACTIONS ON SPHERES

FUICHI UCHIDA*

(Received June 1, 1979)

0. Introduction. Let SL(n, R) denote the group of all $n \times n$ real matrices of determinant 1. In the previous paper [12], we classified real analytic SL(n, R) actions on the standard *n*-sphere for each $n \ge 3$. In this paper we study real analytic SL(n, R) actions on the standard *m*-sphere for $5 \le n \le m \le 2n-2$. We shall show that such an action is characterized by a certain real analytic R^{\times} action on a homotopy (m - n + 1)-sphere. Here R^{\times} is the multiplicative group of all non-zero real numbers.

In Section 1 we construct a real analytic SL(n, R) action on the standard (n + k - 1)-sphere from a real analytic R^{\times} action on a homotopy k-sphere satisfying a certain condition for each $n + k \ge 6$. In Section 3 we state a structure theorem for a real analytic SL(n, R) action which satisfies a certain condition on the restricted SO(n) action, and in Section 5 we state a decomposition theorem and a classification theorem. In Section 6 we construct real analytic R^{\times} actions on the standard k-sphere. It can be seen that there are infinitely many (at least the cardinality of the real numbers) mutually distinct real analytic SL(n, R) actions on the standard m-sphere.

1. Construction. Let $\psi: \mathbb{R}^{\times} \times \Sigma \to \Sigma$ be a real analytic \mathbb{R}^{\times} action on a real analytic closed manifold Σ which is homotopy equivalent to the *k*-sphere. Define a real analytic involution T of Σ by $T(x) = \psi(-1, x)$ for $x \in \Sigma$. Put $F = F(\mathbb{R}^{\times}, \Sigma)$, the fixed point set. We say that the action ψ satisfies the condition (P) if

(i) there exists a compact contractible k-dimensional submanifold X of Σ such that $X \cup TX = \Sigma$ and $X \cap TX = F$,

(ii) there exists a real analytic \mathbf{R}^{\times} equivariant isomorphism j of $\mathbf{R} \times F$ onto an open set of Σ such that j(0, x) = x for $x \in F$. Here \mathbf{R}^{\times} acts on \mathbf{R} by the scalar multiplication.

Notice that $F = F(T, \Sigma)$, the fixed point set of the involution T by the condition (i), and hence F is a real analytic (k-1)-dimensional closed submanifold of Σ . Define a map

^{*} Supported by Grant-in-Aid for Scientific Research.