THE HAUSDORFF DIMENSION OF LIMIT SETS OF SOME FUCHSIAN GROUPS

Harushi Furusawa

(Received August 1, 1980)

1. Preliminaries. Let Γ and Λ be a non-elementary finitely generated Fuchsian group of the second kind and its limit set, respectively. Put $M_{t}(\delta, \Lambda)=\inf \sum_{i}\left|I_{i}\right|^{t}$, where the infimum is taken over all coverings of Λ by sequences $\left\{I_{i}\right\}$ of sets I_{i} with the spherical diameter $\left|I_{i}\right|$ less than a given number $\delta>0$. Further, put $M_{t}(\Lambda)=\sup M_{t}(\delta, \Lambda)$, which is called the t-dimensional Hausdorff measure of Λ. It is shown in [2] that if $\infty \notin \Lambda, M_{t}(\Lambda)=\sup _{\dot{\delta}} \inf \sum_{i} \operatorname{dia}^{t}\left(I_{i}\right)$, where the infimum is taken over all coverings of Λ by sequences $\left\{I_{i}\right\}$ of sets I_{i} with the Euclidean diameter $\operatorname{dia}\left(I_{i}\right)$. We call $d(\Lambda)=\inf \left\{t>0 ; M_{t}(\Lambda)=0\right\}$ the Hausdorff dimension of Λ. In [3] Beardon proved that $d(\Lambda)<1$ for the limit set $\Lambda(\nexists \infty)$ of any finitely generated Fuchsian group of the second kind.

The purpose of this note is to show the continuity of $d(\Lambda)$ with respect to quasiconformal deformations of Γ.

Let w be a K-quasiconformal mapping of the unit disc D onto itself and $w(0)=0$. The following distortion theorem is due to Mori [5].

Proposition 1. Let w be a K-quasiconformal mapping of D onto itself and $w(0)=0$. Then for every pair of points z_{1}, z_{2} with $\left|z_{1}\right| \leqq 1$, $\left|z_{2}\right| \leqq 1$,

$$
\left|w\left(z_{1}\right)-w\left(z_{2}\right)\right|<16\left|z_{1}-z_{2}\right|^{1 / K}, \quad\left(z_{1} \neq z_{2}\right) .
$$

Let Γ be a finitely generated Fuchsian group acting on D. We say that Γ has a type $(g ; n ; m)$ if $S=D / \Gamma$ is obtained from a compact surface of genus g by removing $j(\geqq 0$) points, m ($\geqq 0$) conformal discs and if there are finitely many, say k ($\geqq 0$), ramification points on S, where $n=j+k$. Suppose that to each ramification point a_{i} ($i=1,2, \cdots, k$) on S, there is assigned an integer $\nu_{i}, 1<\nu_{1} \leqq \nu_{2} \leqq \cdots \leqq$ $\nu_{k}<+\infty$. Then we say that Γ has the signature $\left(g ; \nu_{1}, \nu_{2}, \cdots, \nu_{k}\right.$, $\nu_{k+1}, \cdots, \nu_{n} ; m$), where $\nu_{k+1}=\cdots=\nu_{n-1}=\nu_{n}=\infty$. We call an isomorphism χ of a Fuchsian group Γ_{0} onto Γ_{1} quasiconformal if there exists a quasiconformal mapping w which maps D onto itself and $w(0)=0$ such that $\chi(A)=w A w^{-1}$ for all $A \in \Gamma_{0}$. The following proposition was proved by Bers [4].

