INEQUALITIES OF FEJÉR-RIESZ TYPE FOR HOLOMORPHIC FUNCTIONS ON CERTAIN PRODUCT DOMAINS

Dedicated to the memory of Professor Teishirô Saitô

NOZOMU MOCHIZUKI

(Received October 15, 1981)

1. Introduction. Let f be a holomorphic function in a neighborhood of the closed unit disc in the complex plane C and l be a chord of the boundary circle C. Then the following inequality holds for every p, 0 :

$$(1) \qquad \qquad \int_{l} |f(z)|^{p} |dz| \leq K_{l} \int_{C} |f(z)|^{p} |dz|$$

in which K_l is a constant depending only on l, and $K_l < 1$ ([1], [5]). If l coincides with a diameter of the disc, then $K_l = 1/2$ and the Fejér-Riesz inequality follows ([2]), and this is extended to the H^p -functions on the unit ball of C^n , $n \ge 2$ ([4]).

The purpose of the present note is to obtain an inequality similar to (1) for the H^p -functions on a domain in \mathbb{C}^N which is a product of balls in \mathbb{C}^{n_j} , $j = 1, \dots, m$. This inequality gives, as a special case, an extension of (1) to H^p -functions on the unit polydisc in \mathbb{C}^n which is not treated in [4], and we note that the constant appearing in the inequality exhibits a remarkable contrast to that for the unit ball.

2. Statements of results. Let $C^N = C^{n_1} \times \cdots \times C^{n_m}$ and let $Z = (Z^1, \dots, Z^m) \in C^N$, where we shall use the notations $Z^j = (z_1^j, \dots, z_{n_j}^j) \in C^{n_j}$ and $X^j = (x_1^j, x_2^j, \dots, x_{2n_j-1}^j, x_{2n_j}^j) \in \mathbb{R}^{2n_j}$ with $z_k^j = x_{2k-1}^j + ix_{2k}^j, k = 1, \dots,$ $n_j; j = 1, \dots, m$. We shall write $||Z^j||^2 = |z_1^j|^2 + \cdots + |z_{n_j}^j|^2$ and $||X^j||^2 = (x_1^{j)^2} + \cdots + (x_{2n_j}^j)^2$. If $A^j = (a_1^j, \dots, a_{2n_j}^j) \in \mathbb{R}^{2n_j}$, we write $A^j X^j = a_1^j x_1^j + \cdots + a_{2n_j}^j x_{2n_j}^j$. We consider a domain $B = B_1 \times \cdots \times B_m$ in C^N , where B_j is the unit ball in C^{n_j} centered at the origin, i.e., B_j is the set of points Z^j such that $||Z^j|| < 1$. We let ∂B stand for the Bergman-Šilov boundary of $B, \partial B = \partial B_1 \times \cdots \times \partial B_m$, where ∂B_j is the boundary of B_j . We denote the Lebesgue measure of elements of the surface area of spheres ∂B_j , $j = 1, \dots, m$. The Hardy space $H^p(B), 0 , is defined and properties we need can be derived as in the case of polydiscs ([6]); especially,$