INEQUALITIES OF FEJÉR-RIESZ TYPE FOR HOLOMORPHIC FUNCTIONS ON CERTAIN PRODUCT DOMAINS

Dedicated to the memory of Professor Teishirô Saitô

Nozomu Mochizuki

(Received October 15, 1981)

1. Introduction. Let f be a holomorphic function in a neighborhood of the closed unit disc in the complex plane C and l be a chord of the boundary circle C. Then the following inequality holds for every $p, 0<$ $p<\infty$:

$$
\begin{equation*}
\int_{l}|f(z)|^{p}|d z| \leqq K_{l} \int_{C}|f(z)|^{p}|d z| \tag{1}
\end{equation*}
$$

in which K_{l} is a constant depending only on l, and $K_{l}<1$ ([1], [5]). If l coincides with a diameter of the disc, then $K_{l}=1 / 2$ and the Fejér-Riesz inequality follows ([2]), and this is extended to the H^{p}-functions on the unit ball of $C^{n}, n \geqq 2$ ([4]).

The purpose of the present note is to obtain an inequality similar to (1) for the H^{p}-functions on a domain in C^{N} which is a product of balls in $C^{n_{j}}, j=1, \cdots, m$. This inequality gives, as a special case, an extension of (1) to H^{p}-functions on the unit polydisc in C^{n} which is not treated in [4], and we note that the constant appearing in the inequality exhibits a remarkable contrast to that for the unit ball.
2. Statements of results. Let $\boldsymbol{C}^{N}=\boldsymbol{C}^{n_{1}} \times \cdots \times \boldsymbol{C}^{n_{m}}$ and let $Z=$ $\left(Z^{1}, \cdots, Z^{m}\right) \in C^{N}$, where we shall use the notations $Z^{j}=\left(z_{1}^{j}, \cdots, z_{n_{j}}^{j}\right) \in \boldsymbol{C}^{n_{j}}$ and $X^{j}=\left(x_{1}^{j}, x_{2}^{j}, \cdots, x_{2 n_{j}-1}^{j}, x_{2 n_{j}}^{j}\right) \in R^{2 n_{j}} \quad$ with $\quad z_{k}^{j}=x_{2 k-1}^{j}+i x_{2 k}^{j}, k=1, \cdots$, $n_{j} ; j=1, \cdots, m$. We shall write $\left\|Z^{j}\right\|^{2}=\left|z_{1}^{j}\right|^{2}+\cdots+\left|z_{n_{j}}^{j}\right|^{2}$ and $\left\|X^{j}\right\|^{2}=$ $\left(x_{i}^{j}\right)^{2}+\cdots+\left(x_{2 n_{j}}^{j}\right)^{2}$. If $A^{j}=\left(a_{1}^{j}, \cdots, a_{2 n_{j}}^{j}\right) \in \boldsymbol{R}^{2 n_{j}}$, we write $A^{j} X^{j}=a_{1}^{j} x_{1}^{j}+\cdots+$ $a_{2 n_{j}}^{j} x_{2 n_{j}}^{j}$. We consider a domain $\boldsymbol{B}=\boldsymbol{B}_{1} \times \cdots \times \boldsymbol{B}_{m}$ in \boldsymbol{C}^{N}, where \boldsymbol{B}_{j} is the unit ball in $\boldsymbol{C}^{n_{j}}$ centered at the origin, i.e., \boldsymbol{B}_{j} is the set of points Z^{j} such that $\left\|Z^{j}\right\|<1$. We let $\partial \boldsymbol{B}$ stand for the Bergman-Šilov boundary of $\boldsymbol{B}, \partial \boldsymbol{B}=\partial \boldsymbol{B}_{1} \times \cdots \times \partial \boldsymbol{B}_{m}$, where $\partial \boldsymbol{B}_{j}$ is the boundary of \boldsymbol{B}_{j}. We denote the Lebesgue measure on $\partial \boldsymbol{B}$ by $d \tau$; more precisely, this means that $d \tau$ is the product measure of elements of the surface area of spheres $\partial \boldsymbol{B}_{j}$, $j=1, \cdots, m$. The Hardy space $H^{p}(\boldsymbol{B}), 0<p<\infty$, is defined and properties we need can be derived as in the case of polydiscs ([6]); especially,

