GENERALIZED INVERSE METHOD FOR SUBSPACE MAPS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

SAICHI IZUMINO

(Received December 23, 1982)

1. Introduction. Let H be a Hilbert space and let C(H) be the set of all closed linear subspaces in H. For a bounded linear operator A on H, define a map ϕ_A on C(H), called the subspace map of A, by

$$\phi_{\scriptscriptstyle A}(M) = (AM)^- \qquad (M \in C(H))$$
 ,

where "-" denotes the uniform closure. Identifying every closed subspace M with the corresponding (orthogonal) projection P_M or proj M, we see that C(H) is a subset of B(H), the Banach space of all bounded linear operators on H and hence has the uniform, strong and weak (operator) topologies. It was shown in [8] (cf. [2]) that the subspace map ϕ_A is uniformly (and strongly) continuous on C(H) if and only if the operator A is left-invertible, and moreover, in this case ϕ_A behaves well. For instance, $\phi_A(\mathscr{F})$ is uniformly (resp. strongly, weakly) closed if \mathscr{F} is a uniformly (resp. strongly, weakly) closed subset of C(H).

In this paper we shall show similar results on the subspace map ϕ_A under the weaker condition that the operator A has closed range, or equivalently, has the (Moore-Penrose) generalized inverse [1] [9]; using operator theory of generalized inverses, we shall discuss the local continuity and some other topological properties of ϕ_A of A with closed range, which will extend some results in [2] and [8].

Throughout this note we shall write $A \in (CR)$ when the operator A has closed range. The generalized inverse A^{\dagger} of $A \in (CR)$ satisfies (and is determined by) the following four Penrose identities [1]

$$AA^{\dagger}A = A$$
, $A^{\dagger}AA^{\dagger} = A^{\dagger}$, $(AA^{\dagger})^* = AA^{\dagger}$ and $(A^{\dagger}A)^* = A^{\dagger}A$.

If we denote by AH and ker A the range and the kernel of $A(\in(CR))$ respectively, then the products AA^{\dagger} and $A^{\dagger}A$ represent the projections onto AH and the orthogonal complement $(\ker A)^{\perp}$ of ker A respectively [1]. For two projections P and Q, write P^{\perp} and $P \lor Q$ for the projection onto $(PH)^{\perp}$ and for that onto the closed linear span of PH and QH, respectively. Now, for our later discussion we state three lemmas on