GENERALIZED INVERSE METHOD FOR SUBSPACE MAPS

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Saichi Izumino

(Received December 23, 1982)

1. Introduction. Let H be a Hilbert space and let $C(H)$ be the set of all closed linear subspaces in H. For a bounded linear operator A on H, define a map ϕ_{A} on $C(H)$, called the subspace map of A, by

$$
\phi_{A}(M)=(A M)^{-} \quad(M \in C(H)),
$$

where "-" denotes the uniform closure. Identifying every closed subspace M with the corresponding (orthogonal) projection P_{M} or proj M, we see that $C(H)$ is a subset of $B(H)$, the Banach space of all bounded linear operators on H and hence has the uniform, strong and weak (operator) topologies. It was shown in [8] (cf. [2]) that the subspace $\operatorname{map} \phi_{A}$ is uniformly (and strongly) continuous on $C(H)$ if and only if the operator A is left-invertible, and moreover, in this case ϕ_{A} behaves well. For instance, $\phi_{A}(\mathscr{F})$ is uniformly (resp. strongly, weakly) closed if \mathscr{F} is a uniformly (resp. strongly, weakly) closed subset of $C(H)$.

In this paper we shall show similar results on the subspace map ϕ_{A} under the weaker condition that the operator A has closed range, or equivalently, has the (Moore-Penrose) generalized inverse [1] [9]; using operator theory of generalized inverses, we shall discuss the local continuity and some other topological properties of ϕ_{A} of A with closed range, which will extend some results in [2] and [8].

Throughout this note we shall write $A \in(\mathrm{CR})$ when the operator A has closed range. The generalized inverse A^{\dagger} of $A \in(C R)$ satisfies (and is determined by) the following four Penrose identities [1]

$$
A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger} \quad \text { and } \quad\left(A^{\dagger} A\right)^{*}=A^{\dagger} A
$$

If we denote by $A H$ and ker A the range and the kernel of $A(\in(\mathrm{CR}))$ respectively, then the products $A A^{\dagger}$ and $A^{\dagger} A$ represent the projections onto $A H$ and the orthogonal complement $(\operatorname{ker} A)^{\perp}$ of ker A respectively [1]. For two projections P and Q, write P^{\perp} and $P \vee Q$ for the projection onto $(P H)^{\perp}$ and for that onto the closed linear span of $P H$ and $Q H$, respectively. Now, for our later discussion we state three lemmas on

