Tôhoku Math. Journ. 36 (1984), 33-40.

A MODIFIED FORM OF THE VARIATION-OF-CONSTANTS FORMULA FOR EQUATIONS WITH INFINITE DELAY

Dedicated to Professor Tamotsu Tsuchikura on his sixtieth birthday

Toshiki Naito

(Received December 22, 1982)

1. Introduction. For equations with finite delay, the variation-ofconstants formula was given in Halanay's book [2]. Banks [1] pointed out a mistake in this book and presented the correct result. Since equations with finite delay were mainly considered, the results were derived under the restrictive hypotheses: the kernel function $\eta(t, \theta)$ of the linear operator $L(t, \cdot)$ (cf. Theorem 2.1) is constant for sufficiently small $\theta < 0$.

In the present paper, we start from the following hypotheses: $L(t, \phi)$ is continuous and the phase space for ϕ is the general space for equations with infinite delay introduced by Hale and Kato [4]. From the first hypothesis, the Borel measurability of $\eta(t, \theta)$ is naturally induced; from the second, the constant property of $\eta(t, \theta)$ mentioned above cannot be assumed (see Theorem 2.1). The equation related to the fundamental matrix is reduced to the standard equation with infinite delay (Proposition 3.1):

(1.1) $x'(t) = L(t, x_t) + h(t) ,$

where *h* is locally integrable. The representation of solutions in Theorem 3.3, which is already announced in [5], has a form that is somewhat different from the variation-of-constants formula given in [1], [2], [3]. For the special phase space \mathscr{C}_{τ} defined in Section 4, our formula is rewritten in a form analogous to the variation-of-constants formula. However, it contains a new term depending on the "exponential limit of the initial function at $-\infty$ ". Finally, we remark that the present result is an extension of the work for autonomous equations [6] to the case of nonautonomous equations.

2. Representation of linear operators. For a function $x: (-\infty, a) \rightarrow C^n$, let $x_t: (-\infty, 0] \rightarrow C^n$, t < a, be defined by $x_t(\theta) = x(t + \theta)$ for θ in $(-\infty, 0]$. Suppose \mathscr{B} is a linear space of functions ϕ, ψ, \cdots , mapping $(-\infty, 0]$ into C^n , with a semi-norm $|\phi|, |\psi|, \cdots$ having the following