REFLECTION GROUPS AND THE EIGENVALUE PROBLEMS OF VIBRATING MEMBRANES WITH MIXED BOUNDARY CONDITIONS

Hajime Urakawa

(Received March 18, 1983)

Introduction. Throughout this paper, (M, g) is an n-dimensional space form of constant curvature, that is, the Euclidean space \boldsymbol{R}^{n}, the standard sphere \boldsymbol{S}^{n} or the hyperbolic space \boldsymbol{H}^{n}. Let Δ be the (nonnegative) Laplacian of (M, g). Let Ω be a bounded domain in M with an appropriately regular boundary $\partial \Omega$. For an arbitrary fixed real number ρ, let us consider the following boundary value eigenvalue problem:

$$
\begin{cases}\Delta f=\lambda f & \text { in } \Omega, \\ f=0 & \text { on } \Gamma_{1}, \text { and } \\ \partial f / \partial n=\rho f & \text { a.e. } \Gamma_{2}, \text { i.e., where the exterior normal } n \text { of } \Gamma_{2} \text { is defined. }\end{cases}
$$

Here the boundary $\partial \Omega$ is a disjoint union of Γ_{1} and Γ_{2}. It is called (cf. [B, p. 91]) to be
(D) the fixed membrane problem if $\Gamma_{2}=\varnothing$,
(N) the free membrane problem if $\Gamma_{1}=\varnothing$, or
$\left(M_{\rho}\right)$ the membrane problem of mixed boundary conditions if $\Gamma_{1} \neq \varnothing$ and $\Gamma_{2} \neq \varnothing$.
It is well known that each problem has a discrete spectrum of the eigenvalues with finite multiplicity. We denote by $\operatorname{Spec}_{D}(\Omega)$, $\operatorname{Spec}_{N}(\Omega)$ and $\operatorname{Spec}_{\boldsymbol{m}_{\rho}}(\Omega)$, the spectra of the problems $(D),(N)$ and $\left(M_{\rho}\right)$, respectively.

One of the important problems of the spectra is to research how the spectra $\operatorname{Spec}_{D}(\Omega), \operatorname{Spec}_{N}(\Omega)$ or $\operatorname{Spec}_{w_{\rho}}(\Omega)$ reflect the shape of Ω. In his paper [K], M. Kac posed the following problem:

For two bounded domains $\Omega, \widetilde{\Omega}$ in $\boldsymbol{R}^{n}(n \geqq 2)$, assume that $\operatorname{Spec}_{D}(\Omega)=$ $\operatorname{Spec}_{D}(\widetilde{\Omega})$. Are the domains $\Omega, \widetilde{\Omega}$ congruent in \boldsymbol{R}^{n} ?
Here two domains $\Omega, \widetilde{\Omega}$ are congruent in the space form (M, g) if there exists an isometry Φ of (M, g) such that $\Phi(\Omega)=\widetilde{\Omega}$. Note that $\Omega, \widetilde{\Omega}$ are isometric with respect to the induced metrics from (M, g) if and only if they are congruent in (M, g) because of simple connectedness of M (cf. [K.N., p. 252]).

