Tôhoku Math. Journ. 36 (1984), 175-183.

REFLECTION GROUPS AND THE EIGENVALUE PROBLEMS OF VIBRATING MEMBRANES WITH MIXED BOUNDARY CONDITIONS

HAJIME URAKAWA

(Received March 18, 1983)

Introduction. Throughout this paper, (M, g) is an *n*-dimensional space form of constant curvature, that is, the Euclidean space \mathbb{R}^n , the standard sphere \mathbb{S}^n or the hyperbolic space \mathbb{H}^n . Let Δ be the (non-negative) Laplacian of (M, g). Let Ω be a bounded domain in M with an appropriately regular boundary $\partial \Omega$. For an arbitrary fixed real number ρ , let us consider the following boundary value eigenvalue problem:

 $(\Delta f = \lambda f \quad \text{in } \Omega,$

$$f = 0$$
 on Γ_1 , and

 $\partial f/\partial n = \rho f$ a.e. Γ_2 , i.e., where the exterior normal n of Γ_2 is defined.

Here the boundary $\partial \Omega$ is a disjoint union of Γ_1 and Γ_2 . It is called (cf. [B, p. 91]) to be

(D) the fixed membrane problem if $\Gamma_2 = \emptyset$,

(N) the free membrane problem if $\Gamma_1 = \emptyset$, or

 (M_{ρ}) the membrane problem of mixed boundary conditions if $\Gamma_1 \neq \emptyset$ and $\Gamma_2 \neq \emptyset$.

It is well known that each problem has a discrete spectrum of the eigenvalues with finite multiplicity. We denote by $\operatorname{Spec}_{D}(\Omega)$, $\operatorname{Spec}_{N}(\Omega)$ and $\operatorname{Spec}_{M_{\rho}}(\Omega)$, the spectra of the problems (D), (N) and (M_{ρ}) , respectively.

One of the important problems of the spectra is to research how the spectra $\operatorname{Spec}_{D}(\Omega)$, $\operatorname{Spec}_{N}(\Omega)$ or $\operatorname{Spec}_{M_{\rho}}(\Omega)$ reflect the shape of Ω . In his paper [K], M. Kac posed the following problem:

For two bounded domains Ω , $\tilde{\Omega}$ in \mathbb{R}^n $(n \geq 2)$, assume that $\operatorname{Spec}_D(\Omega) = \operatorname{Spec}_D(\tilde{\Omega})$. Are the domains Ω , $\tilde{\Omega}$ congruent in \mathbb{R}^n ?

Here two domains Ω , $\tilde{\Omega}$ are congruent in the space form (M, g) if there exists an isometry Φ of (M, g) such that $\Phi(\Omega) = \tilde{\Omega}$. Note that Ω , $\tilde{\Omega}$ are isometric with respect to the induced metrics from (M, g) if and only if they are congruent in (M, g) because of simple connectedness of M (cf. [K.N., p. 252]).