Tôhoku Math. Journ. 37 (1985), 27-32.

AXIOMS FOR STIEFEL-WHITNEY HOMOLOGY CLASSES OF Z_2 -EULER SPACES

AKINORI MATSUI

(Received October 13, 1983)

1. Introduction and the statement of results. In [2], Blanton and Schweitzer gave an axiomatic characterization for Stiefel-Whitney classes or Stiefel-Whitney homology classes of smooth manifolds, and raised a question of axiomatic characterizations of these classes for other categories, for example, categories of *PL*-manifolds, topological manifolds or Euler spaces. In this paper we give an answer to this question for Z_2 -Euler spaces (cf. [5], [8]).

Let X and Y be \mathbb{Z}_2 -Euler spaces and let $\varphi: Y \to X$ be a *PL*-embedding. We call φ a regular embedding if dim $X = \dim Y$, $\varphi(Y)$ is closed in X, $\varphi(\operatorname{Int} Y) \cap \partial X = \emptyset$ and $\varphi|\operatorname{Int} Y$ is an open map, where $\operatorname{Int} Y = Y - \partial Y$.

Let H_*^{\inf} denote the homology theory of infinite chains. Given a regular embedding $\varphi: Y \to X$, we define a homomorphism $\varphi^*: H_*^{\inf}(X, \partial X; \mathbb{Z}_2) \to H_*^{\inf}(Y, \partial Y; \mathbb{Z}_2)$ by $\varphi^* = (\varphi_*)^{-1} \circ i_*$, where $i_*: H_*^{\inf}(X, \partial X; \mathbb{Z}_2) \to H_*^{\inf}(X, X \to \varphi(\operatorname{Int} Y); \mathbb{Z}_2)$ is the homomorphism induced from the identity $i: (X, \partial X) \to (X, X - \varphi(\operatorname{Int} Y))$. Note that $\varphi_*: H_*^{\inf}(Y, \partial Y; \mathbb{Z}_2) \to H_*^{\inf}(X, X - \varphi(\operatorname{Int}); \mathbb{Z}_2)$ is an isomorphism by the excision property. Therefore φ^* is well defined.

Let \mathscr{C} be the category whose objects are \mathbb{Z}_2 -Euler spaces and whose morphisms are regular embeddings. Let \mathscr{S} be a full subcategory of \mathscr{C} . Consider a homology class

$$S_{*}(X) = S_{0}(X) + S_{1}(X) + \cdots + S_{n}(X)$$
 in $H_{*}^{inf}(X, \partial X; \mathbb{Z}_{2})$,

where n is the dimension of X, satisfying the following axioms:

AI. For every object X of \mathscr{S} and every integer $i \ge 0$, there is a homology class $S_i(X)$ in $H_i^{\text{inf}}(X, \partial X; \mathbb{Z}_2)$.

AII. If $\varphi: Y \to X$ is a morphism of \mathscr{S} , then $S_*(Y) = \varphi^* S_*(X)$.

AIII. $S_*(X \times Y) = S_*(X) \times S_*(Y)$ for every objects X, Y of \mathcal{S} , such that $X \times Y$ is an object of \mathcal{S} .

AIV. For every integer $n \ge 0$, $S_*(\mathbf{P}^n) = s_*(\mathbf{P}^n)$, where $s_*(\mathbf{P}^n)$ is the Stiefel-Whitney homology class of the *n*-dimensional real projective space \mathbf{P}^n .

We call $S_*(X)$ an axiomatic Stiefel-Whitney homology class of X in