A CONDITION FOR ISOPARAMETRIC HYPERSURFACES OF S^n TO BE HOMOGENEOUS

HITOSHI TAKAGI

(Received February 10, 1984)

1. Introduction. Let M be a connected hypersurface of the ndimensional sphere S^n of radius 1. O(n + 1) acts on S^n as an isometry group. M is said to be homogeneous if it is an orbit of a certain subgroup of O(n + 1). M is said to be isoparametric if it has constant principal curvatures. If M is homogeneous then it is isoparametric. E. Cartan investigated the converse problem and he gave an affirmative answer in some special cases ([2], [3], [4], [5]). But, recently, Ozeki and Takeuchi gave examples of isoparametric hypersurfaces which are not homogeneous in [8], using a result of Münzner [7]. On the other hand, homogeneous hypersurfaces of S^n are investigated in detail by Hsiang and Lawson [6] and by Takagi and Takahashi [10].

In the present paper, we give an additional differential geometric condition for isoparametric hypersurfaces of S^n to be homogeneous, using the result to Münzner. Our main results are the following Theorems A and B. To state them, we need some notations. Let T_1, \dots, T_r and T be tensor fields on a manifold. T is said to be generated by T_1, \dots, T_r if T is a constant linear combination of tensor fields, each of which is a tensor product of some members of T_1, \dots, T_r or its contraction. We denote this fact by $T = P(T_1, \dots, T_r)$. Let M be a Riemannian manifold. Let M_p and M_q be the tangent spaces at $p, q \in M$. Then M_p and M_q are vector spaces with the inner products given by the Riemannian metric. A linear isometry L of M_p onto M_q is extended naturally to an isomorphism of the tensor algebra $T(M_p)$ onto $T(M_q)$, which is denoted also by L. For an oriented hypersurface M of S^n , we denote by G, H, ∇ and $\nabla^m H$ the first and second fundamental forms, the covariant differentiation and the *m*-th covariant differential, respectively. By G^{-1} , we denote the inner product for 1-forms on M induced naturally from G.

THEOREM A. Let M be an oriented isoparametric hypersurface of S^n with g distinct principal curvatures. Then, for any $m \ge g - 1$, $\nabla^m H$

This research was partially supported by Grant-in-Aid for Scientific Research (No. 59540008), Ministry of Education.