Tôhoku Math. Journ. 38 (1986), 357-364.

ON A CLASS OF THE UNIVERSALLY INTEGRABLE RANDOM FUNCTIONS

TAKESHI SEKIGUCHI AND YASUNOBU SHIOTA

(Received June 19, 1985)

In the recent papers [4] and [5], Ogawa has developed the theory of a noncausal stochastic integral and proved that this integral naturally contains the symmetric integral of Stratnovich-Fisk as a special case. In this paper we give an extension of his result.

1. Introduction and preliminaries. First of all, we briefly review Ogawa's result. Let $\{W(x, \omega): 0 \leq x \leq 1\}$ be a one-dimensional Wiener process on a complete probability space $(\Omega, F, P), \phi = \{\phi_n(x)\}$ be a complete orthonormal system (CONS, for short) in $L^2([0, 1])$ and set $K_n(x, y) = \sum_{k=1}^n \phi_k(x)\phi_k(y)$. In this section we assume that every random function is $B([0, 1]) \times F$ -measurable and satisfies the condition $P(\int_0^1 F^2(x, \omega) dx < \infty) = 1$. We say that F is ϕ -integrable if

$$\lim_{n\to\infty}\int_0^1 F(x, \omega)\int_0^1 K_n(x, y)d^\circ W(y)dx$$

exists in probability and denote the limit by $\int_0^1 F(x)d_{\phi}W(x)$. Here $\int_0^1 K_n(x, y)d^{\circ}W(y)$ stands for the usual Ito (forward) integral. If the limit does not depend on the choice of a CONS ϕ , then we say that F is universally integrable and denote it by $\int_0^1 F(x)dW(x)$. Let $G(x, \omega)$ be a causal (i.e., adapted to the family of σ -fields $F_x = \sigma\{W(y): 0 \leq y \leq x\}$) random function and $H(x, \omega)$ be a (not necessarily causal) random function whose sample paths are of bounded variation with probability one. We say that the random function $F(x, \omega)$ of the form

(1)
$$F(x, \omega) = H(x, \omega) + \int_0^x G(y, \omega) d^\circ W(y)$$

is a quasi-martingale.

THEOREM (Ogawa [4] and [5]). (1) Every quasi-martingale is ϕ integrable if and only if the following condition is satisfied:

$$(2) \qquad \qquad \sup_n \int_0^1 u_n^2(x) dx < \infty .$$