INTERSECTION FORMULA FOR STIEFEL-WHITNEY HOMOLOGY CLASSES

Akinori Matsui

(Received December 22, 1986)

1. Introduction and the statement of results. The purpose of this paper is to study the relationship between the Stiefel-Whitney homology classes of mutually transverse Euler spaces and their intersection in an ambient PL-manifold. Besides manifolds, real analytic spaces are typical examples of mod 2 Euler spaces (cf. Sullivan [11]).

Let (A, B) be a pair of a polyhedron A and a subspace B of A such that $\operatorname{rank} H_{*}(A, B ; \boldsymbol{Z})<\infty$. Denote by $e(A, B)$ the $\bmod 2$ Euler number of the pair (A, B). If $B \neq \varnothing$, we write $e(A)=e(A, \varnothing)$.

Let X be a locally compact n-dimensional polyhedron. The polyhedron X is said to be a mod 2 Eulder space (cf. [1], [5]), if the following hold for the subpolyhedron ∂X :
(1) $\quad \partial X$ is $(n-1)$-dimensional or empty.
(2) $e(X, X-x)= \begin{cases}1 & (x \in X-\partial X) \\ 0 & (x \in \partial X)\end{cases}$
(3) if $\partial X \neq \varnothing$, then $e(\partial X, \partial X-x)=1(x \in \partial X)$.

Let K be a triangulation of a polyhedron X. Denote by K^{\prime} the barycentric subdivision of K. If X is an n-dimensional mod 2 Euler space, the sum of all k-simplexes in K^{\prime} is a $\bmod 2$ cycle and defines an element $s_{k}(X)$ in $H_{k}\left(X, \partial X ; \boldsymbol{Z}_{2}\right)$, which is called the k-th Stiefel-Whitney homology class of X (cf. [1], [5]). We put $s_{*}(X)=s_{0}(X)+s_{1}(X)+\cdots+s_{n}(X)$. We define the mod 2 fundamental class in $H_{n}\left(X, \partial X ; \boldsymbol{Z}_{2}\right)$ to be $[X]=s_{n}(X)$. If X is a \boldsymbol{Z}_{2}-homology manifold, then we know that $s_{*}(X)=[X] \cap w^{*}(X)$, where $w^{*}(X)$ is the Stiefel-Whitney cohomology class of X.

Let X be an n-dimensional polyhedron and let K be a triangulation of X. If the union of all n-simplexes are dense in X, the polyhedron is said to be pure n-dimensional. If X is a mod 2 Euler space of pure dimension PL-embedded in a PL-manifold M with $\partial X \subset \partial M$ and $X-\partial X \subset$ $M-\partial M$, then X is called a proper PL-subspace in M. Let a and b be homology classes in $H_{*}\left(M, \partial M ; \boldsymbol{Z}_{2}\right)$. We define the homological intersection by $a \cdot b=[M] \cap\left(([M] \cap)^{-1} a \cup([M] \cap)^{-1} b\right)$.

The main result of this paper is the following:
Theorem. Let X and Y be mod 2 Euler spaces of pure dimension

