INFINITESIMAL ISOMETRIES OF FRAME BUNDLES WITH NATURAL RIEMANNIAN METRIC

Hitoshi Takagi and Makoto Yawata

(Received December 26, 1989)

1. Introduction. Let $(M,\langle\rangle$,$) be a connected orientable Riemannian manifold$ of dimension $n \geqq 3$ and $S O(M)$ be the bundle of all oriented orthonormal frames over M. $S O(M)$ has a Riemannian metric, also denoted by \langle,$\rangle , defined naturally as follows:$ At each point u of $S O(M)$, the tangent space $S O(M)_{u}$ is a direct sum $Q_{u}+V_{u}$, where Q_{u} is the horizontal space defined by the Riemannian connection and V_{u} is the space of vectors tangent to the fibre through u. The right action of the special orthogonal group $S O(n)$ on the bundle $S O(M)$ gives an isomorphism f_{u} of the Lie algebra $\mathfrak{o}(n)$ onto V_{u} for each $u \in S O(M)$. We denote by A_{u} the image of $A \in \mathfrak{o}(n)$. On the other hand, $S O(n)$ has a bi-invariant metric denoted also by \langle,$\rangle , which is defined by$

$$
\langle A, C\rangle=\sum_{i, j} A_{i j} C_{i j}, \quad A, C \in \mathfrak{o}(n)
$$

Then, the Riemannian metric \langle,$\rangle of S O(M)$ is defined by

$$
\begin{aligned}
& \left\langle A_{u}, C_{u}\right\rangle=\langle A, C\rangle \\
& \left\langle A_{u}, X_{u}\right\rangle=0 \\
& \left\langle X_{u}, Y_{u}\right\rangle=\left\langle p X_{u}, p Y_{u}\right\rangle
\end{aligned}
$$

for $X_{u}, Y_{u} \in Q_{u}$ and $A, C \in \mathfrak{o}(n)$, where p is the projection $S O(M) \rightarrow M$.
O'Neill [4] studied the curvature of $(S O(M),\langle\rangle$,$) . In the present paper, we shall$ study Killing vector fields on $(S O(M),\langle\rangle$,$) and prove the following Theorems \mathrm{A}$ and B. Let X be a vector field on $S O(M) . X$ is said to be vertical (resp. horizontal) if $X_{u} \in V_{u}$ (resp. if $X_{u} \in Q_{u}$) for all $u \in S O(M) . X$ is said to be fibre preserving if $\left[X, X^{\prime}\right]$ is vertical for any vertical vector field X^{\prime}. Let A^{*} be the vertical vector field defined by $\left(A^{*}\right)_{u}=A_{u}=f_{u}(A) . A^{*}$ is called the fundamental vector field corresponding to $A \in \mathfrak{v}(n)$. X is decomposed uniquely as $X=X^{H}+X^{V}$, with X^{H} horizontal and X^{V} vertical. X^{H} and X^{V} are called th horizontal part and the vertical part of X, respectively. Let ϕ be a 2 -form on M. Then the tensor field F of type (1,1) is defined by $\langle F Y, Z\rangle=\phi(Y, Z)$. Then, for each $u \in S O(M), F^{\sharp}(\hat{u}) \in \mathfrak{o}(n)$ is defined by

$$
F^{\sharp}(u)=u^{-1} \circ F_{p(u)} \circ u,
$$

where u is regarded as a linear isometry of $\left(\boldsymbol{R}^{n},\langle\rangle,\right)$ onto the tangent space $M_{p(u)}$ at $p(u)$. Here \langle,$\rangle also denotes the standard metric of \boldsymbol{R}^{n}$. Then, the vertical vector field

