INFINITESIMAL ISOMETRIES OF FRAME BUNDLES WITH NATURAL RIEMANNIAN METRIC

HITOSHI TAKAGI AND MAKOTO YAWATA

(Received December 26, 1989)

1. Introduction. Let (M, \langle , \rangle) be a connected orientable Riemannian manifold of dimension $n \ge 3$ and SO(M) be the bundle of all oriented orthonormal frames over M. SO(M) has a Riemannian metric, also denoted by \langle , \rangle , defined naturally as follows: At each point u of SO(M), the tangent space $SO(M)_u$ is a direct sum $Q_u + V_u$, where Q_u is the horizontal space defined by the Riemannian connection and V_u is the space of vectors tangent to the fibre through u. The right action of the special orthogonal group SO(n) on the bundle SO(M) gives an isomorphism f_u of the Lie algebra $\mathfrak{o}(n)$ onto V_u for each $u \in SO(M)$. We denote by A_u the image of $A \in \mathfrak{o}(n)$. On the other hand, SO(n) has a bi-invariant metric denoted also by \langle , \rangle , which is defined by

$$\langle A, C \rangle = \sum_{i,j} A_{ij} C_{ij}, \qquad A, C \in \mathfrak{o}(n).$$

Then, the Riemannian metric \langle , \rangle of SO(M) is defined by

$$\langle A_u, C_u \rangle = \langle A, C \rangle \langle A_u, X_u \rangle = 0 \langle X_u, Y_u \rangle = \langle p X_u, p Y_u \rangle$$

for X_u , $Y_u \in Q_u$ and A, $C \in \mathfrak{o}(n)$, where p is the projection $SO(M) \rightarrow M$.

O'Neill [4] studied the curvature of $(SO(M), \langle , \rangle)$. In the present paper, we shall study Killing vector fields on $(SO(M), \langle , \rangle)$ and prove the following Theorems A and B. Let X be a vector field on SO(M). X is said to be vertical (resp. horizontal) if $X_u \in V_u$ (resp. if $X_u \in Q_u$) for all $u \in SO(M)$. X is said to be fibre preserving if [X, X'] is vertical for any vertical vector field X'. Let A^* be the vertical vector field defined by $(A^*)_u = A_u = f_u(A)$. A^* is called the fundamental vector field corresponding to $A \in \mathfrak{o}(n)$. X is decomposed uniquely as $X = X^H + X^V$, with X^H horizontal and X^V vertical. X^H and X^V are called th horizontal part and the vertical part of X, respectively. Let ϕ be a 2-form on M. Then the tensor field F of type (1,1) is defined by $\langle FY, Z \rangle = \phi(Y, Z)$. Then, for each $u \in SO(M)$, $F^*(\hat{u}) \in \mathfrak{o}(n)$ is defined by

$$F^{*}(u) = u^{-1} \circ F_{p(u)} \circ u ,$$

where u is regarded as a linear isometry of $(\mathbb{R}^n, \langle , \rangle)$ onto the tangent space $M_{p(u)}$ at p(u). Here \langle , \rangle also denotes the standard metric of \mathbb{R}^n . Then, the vertical vector field