FINITENESS OF A COHOMOLOGY ASSOCIATED WITH CERTAIN JACKSON INTEGRALS

KAZUHIKO AOMOTO

(Received December 20, 1989)

Abstract. A structure theorem on q-analogues of b-functions is stated. Basic properties for Jackson integrals of associated q-multiplicative functions are given. Finiteness of cohomology group attached to them is proved for arrangement of A-type root system. Some problems about the derived q-difference systems are posed. An example of basic hypergeometric functions are given.

1. Let $E_n := E^n$ be the direct product of *n* copies of an elliptic curve *E* of modulus $q = e^{2\pi\sqrt{-1}\tau}$ for $\operatorname{Im} \tau > 0$. The first cohomology group $H^1(E_n, \mathbb{C})$ has the Hodge decomposition $H^1(E_n, \mathbb{C}) = H^{1,0}(E_n) + H^{0,1}(E_n)$, where $H^{1,0}(E_n)$ is isomorphic to the direct sum of *n* copies of $H^{1,0}(E)$, the space of holomorphic 1-forms on *E*. Let $\{3, \dots, 3_n; 3_{n+1}, \dots, 3_{2n}\}$ be a basis of the first homology group $H_1(E_n, \mathbb{Z})$ such that each pair $\{3_j, 3_{n+j}\}$ represents a pair of canonical loops in *E*. There exists a system of holomorphic 1-forms $\theta_1, \dots, \theta_n$ on E_n such that

(1.1)
$$\int_{3j} \theta_k = 2\pi \sqrt{-1} \,\delta_{j,k}$$
$$\int_{3n+j} \theta_k = 2\pi \sqrt{-1} \,\tau \delta_{j,k} \,, \qquad \text{Im} \quad \tau > 0 \,.$$

We denote by \overline{X} the factor space of the dual $H^{1,0}(E_n)^*$ of $H^{1,0}(E_n)$ with respect to the abelian subgroup $A = \langle \mathfrak{z}_1, \dots, \mathfrak{z}_n \rangle$ of $H_1(E_n, \mathbb{Z})$ generated by \mathfrak{z}_j , $1 \le j \le n$. This is possible because $H_1(E_n, \mathbb{Z})$ can be contained in $H^{1,0}(E_n, \mathbb{C})^*$. In the same way we denote by X the factor space $H_1(E_n, \mathbb{Z})/A$. X can be assumed to be a submodule of \overline{X} and has a basis $\chi_j = \mathfrak{z}_{n+j} \mod A$. An arbitrary $\chi \in X$ is written uniquely as

(1.2)
$$\chi = \sum_{j=1}^{n} v_j \chi_j \quad \text{for} \quad v_j \in \mathbb{Z} .$$

The quotient \overline{X}/X is canonically isomorphic to E_n . By the map

(1.3)
$$\overline{X} \ni \omega \mapsto x = (x_1 = \exp((\theta_1, \omega)), \cdots, x_n = \exp((\theta_n, \omega))) \in (\mathbb{C}^*)^n$$

for $\omega \in \overline{X}$, \overline{X} is isomorphic to the algebraic torus $q^{\overline{X}} = (C^*)^n$ and X is isomorphic to the discrete subgroup q^X generated by $q^{\chi_1} = (q, 1, \dots, 1), \dots, q^{\chi_n} = (1, 1, \dots, q)$. Here (θ, ω) denotes the canonical bilinear form on $H^{1,0}(E_n, C)$ and its dual.

We denote by $R(\bar{X})$ the field of rational functions on $q^{\bar{X}}$ and by $R^{\times}(\bar{X})$ the