ANOTHER PROOF OF THE DEFECT RELATION FOR MOVING TARGETS

MANABU SHIROSAKI

(Received May 21, 1990)

1. Introduction. The second main theorem and the defect relation of slow moving targets were discussed in [7], where Stoll gave the bound n(n+1) for the sums of defects. The author generalized this result in [5] and gave in [6] examples of holomorphic mappings and moving targets which have the bound n+1. Ru and Stoll [3] then gave the bound n+1 in the general case. Since their proof is complicated, however, we give a simpler proof of Ru-Stoll's theorem in this paper.

2. Statement of the result. Let f be a holomorphic mapping of C into $P^n(C)$. Let $\tilde{f} = (f_0, \dots, f_n)$ be its reduced representation, i.e., \tilde{f} is a holomorphic mapping of C into $C^{n+1} - \{0\}$. Fix $r_0 > 0$. We define the characteristic function T(f; r) of f by

$$T(f;r) = \frac{1}{2\pi} \int_0^{2\pi} \log \|\tilde{f}(re^{i\theta})\| d\theta - \frac{1}{2\pi} \int_0^{2\pi} \log \|\tilde{f}(r_0e^{i\theta})\| d\theta$$

for $r > r_0$. In particular, the characteristic function of a meromorphic function is defined as that of the corresponding holomorphic mapping of C into $P^1(C)$.

For $q \ge n$, let g_j be q+1 holomorphic mappings of C into $P^n(C)$ with reduced representations $\tilde{g}_j = (g_{j0}, \dots, g_{jn})$ $(0 \le j \le q)$. Assume that the following conditions are satisfied:

(1) $T(g_j; r) = o(T(f; r))$ as $r \to \infty$ $(0 \le j \le q)$;

(2) $g_j (0 \le j \le q)$ are in general position, i.e., for any j_0, \dots, j_n with $0 \le j_0 < \dots < j_n \le q$,

$$\det(g_{j_k l})_{0 \le k, l \le n} \not\equiv 0 \; .$$

By (2), we may assume that $g_{j0} \neq 0$ ($0 \leq j \leq q$) by changing the homogeneous coordinate system of $P^n(\mathbf{C})$ if necessary. Then put $\zeta_{jk} = g_{jk}/g_{j0}$ with $\zeta_{j0} \equiv 1$. Let \mathfrak{R} be the smallest subfield containing $\{\zeta_{jk} \mid 0 \leq j \leq q, 0 \leq k \leq n\} \cup \mathbf{C}$ of the meromorphic function field on \mathbf{C} . It is easy to check that T(h; r) = o(T(f; r)) as $r \to \infty$ for all $h \in \mathfrak{R}$. Furthermore, we assume

(3) f is non-degenerate over \Re , i.e., f_0, \dots, f_n are linearly independent over \Re . Put $h_j = g_{j0}f_0 + \dots + g_{jn}f_n$. Then the counting function of g_j for f is defined by

$$N(f, g_j; r) = \frac{1}{2\pi} \int_0^{2\pi} \log|h_j(re^{i\theta})| d\theta - \frac{1}{2\pi} \int_0^{2\pi} \log|h_j(r_0 e^{i\theta})| d\theta$$