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1. Introduction. The second main theorem and the defect relation of slow
moving targets were discussed in [7], where Stoll gave the bound n(n+ 1) for the sums
of defects. The author generalized this result in [5] and gave in [6] examples of
holomorphic mappings and moving targets which have the bound n+ 1. Ru and Stoll
[3] then gave the bound n+1 in the general case. Since their proof is complicated,
however, we give a simpler proof of Ru-Stoll’s theorem in this paper.

2. Statement of the result. Let f be a holomorphic mapping of C into P"(C).
Let f=(f,, - - -, f,) be its reduced representation, i.e., fis a holomorphic mapping of C
into C"*'—{0}. Fix ro>0. We define the characteristic function T(f;r) of f by
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for r>r,. In particular, the characteristic function of a meromorphic function is defined
as that of the corresponding holomorphic mapping of C into P!(C).

For g>n, let g; be g+ 1 holomorphic mappings of C into P"(C) with reduced
representations §;=(g;o, " *, g;») (0<j<g). Assume that the following conditions are
satisfied:

(1) T(g;;r)=0o(T(f;1) as r—>o0 (0<j<q);

(2) g¢;(0<j<q) are in general position, i.e., for any j,, - - -, j, With 0<jo< -+ <
IJn=4q,

det(gjkz)o <ka<nZE0.

By (2), we may assume that g;,#0 (0 <j<g) by changing the homogeneous coordinate
system of P"(C) if necessary. Then put {; =gu/gjo With {;,=1. Let & be the smallest
subfield containing {{;|0<j<q,0<k<n}uC of the meromorphic function field
on C. It is easy to check that T(h; r)=o(T(f; r)) as r— oo for all he K. Furthermore, we
assume
(3) fis non-degenerate over &, i.e., f,, ' -, f, are linearly independent over K.
Put hj=g;0fo+ -+ +9gjufs Then the counting function of g; for f'is defined by
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