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1. Introduction. The group Mob of all Mόbius transformations acting on the
extended complex plane C is identified with the 3-dimensional complex Lie group
PSL(2, C). A discrete subgroup G of Mob is said to be Kleinian if its region of dis-
continuity Ω(G) in C is not empty. Λ(G)\ = C-Ω(G) is called the limit set of G. If
Λ(G) contains infinitely many points, we say G is non-elementary. Throughout this
paper, we denote by G a finitely generated non-elementary Kleinian group which
may contain elliptic elements. For this G, we consider the following three conditions
(A), (B) and (C), which are defined later in this section.

(A) G is geometrically finite.
(B) G is quasiconformally (QC) stable.
(C) The Bers map β* : B(Ω(G\ G)-+PH\G, Π) is surjective.

In §4 and §5 of this paper (Corollaries 1 and 2), we prove

Stronger results for more restricted torsion-free Kleinian groups were obtained by
Sullivan [16]. Concerning other known partial solutions to our problem, one may refer
to §2.
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(A) Geometric finiteness is the most familiar criterion for Kleinian groups to be
"good". G is said to be geometrically finite if the action of G as isometries on the
hyperbolic space H3 has a finite-sided Dirichlet fundamental polyhedron. There is a
well-known equivalent characterization by Beardon-Maskit (see [10, Chap. VI. C. 7]).

(B) To define quasiconformal (QC) stability, we choose a system of generators
of G = {g1, - -,gk}. All our arguments do not depend on the choice of generators.
A homomorphism χ: G->Mόb is determined by the images of the generators
(χ(θi)> '' *> X(θk))> which satisfy relations arising from the relations satisfied by
0i> ' ' '»Gk I n this sense, we represent by χ not only a homomorphism of G but also
a point of the product manifold (Mόb)fc. Therefore the set Hom(G, Mob) of
homomorphisms χ: G-^Mob can be regarded as a subvariety of (Mόb)k, which is an


