Tôhoku Math. J. 43 (1991), 569–585

ON THE CLASSIFICATION OF SMOOTH PROJECTIVE TORIC VARIETIES

VICTOR V. BATYREV

(Received September 11, 1990, revised May 13, 1991)

Abstract. We investigate the problem of the classification of smooth projective toric varieties V of dimension d with a given Picard number ρ over an algebraically closed field. For that purpose we introduce a convenient combinatorial description of such varieties by means of primitive relations among $d+\rho$ integral generators of the associated complete regular fan of convex cones in d-dimensional real space. The main conjecture asserts that the number of the primitive relations is bounded by an absolute constant depending only on ρ . We prove this conjecture for $\rho \leq 3$ and give the classification of d-dimensional smooth complete toric varieties with $\rho = 3$.

1. Introduction. Let k be an arbitrary algebraically closed field. A d-dimensional algebraic torus T is a product of d copies of the multiplicative group k^* of k. A toric variety V is a normal algebraic variety containing T as a Zariski open dense subset with an algebraic action of T on V which extends the group law of T. Any toric variety can be described by a finite system of cones spanned by integer points in the real space R^d . The reader is referred to [1] for the precise definitions.

In this paper we restrict ourselves to complete smooth toric varieties V. Moreover, we shall often assume that V is a projective toric variety.

One can notice that any description of smooth toric varieties has two sides: the combinatorial structure of the corresponding fan and unimodularity conditions on its generators. The weighted triangulations of (d-1)-dimensional sphere introduced in [7] is an example of such a description. One of our objectives is to give a new description of complete smooth toric varieties.

In §2 we introduce the notion of a *primitive collection* of generators and the notion of an associated *primitive relations* among generators. We use these notions to describe toric varieties. If a toric variety V is projective we define also the *degree* of a primitive relation and the *distance* between a generator and a *d*-dimensional cone of the corresponding fan $\Sigma(V)$.

All these notions are used in §3 to get some properties of the combinatorial structure of a *d*-dimensional fan $\Sigma(V)$ associated with a toric variety *V*. It should be remarked that if the Picard number $\rho(V) \ge 3$ there exist combinatorial types of simplicial polytopes which do not give rise to any complete regular fan defining a smooth toric variety [2]. We prove that an arbitrary *d*-dimensional projective regular fan of cones has a primitive

¹⁹⁹¹ Mathematics Subject Classification. Primary 14M25; Secondary 52B20, 52B35.