Tôhoku Math. J. 48 (1996), 229-246

CONSTRUCTION OF HIGHER GENUS MINIMAL SURFACES WITH ONE END AND FINITE TOTAL CURVATURE

KATSUNORI SATO

(Received December 22, 1994, revised December 25, 1995)

Abstract. We prove that there exist complete minimal surfaces in the Euclidean 3-space with one Enneper-type end and finite total curvature which have two parameters j, k and are of genus jk, where j and k are positive integers. Our main problem is *the period problem*: each surface has j periods to be killed. We prove that these periods can be killed simultaneously.

Introduction. Recently, many minimal surfaces with higher genus and finite total curvature have been found. Costa [Co] found a complete minimal surface of genus one in \mathbb{R}^3 . Hoffman and Meeks [HM2] proved its embeddedness, and they found higher genus embedded surfaces which are similar to Costa's surface, but with higher-order rotational symmetry. Wohlgemuth [W] proved rigorously the existence of several higher genus minimal surfaces which have embedded ends, including a surface which was found by Hoffman, Meeks and Callahan only numerically. In 1982, Chen-Gackstatter [CG] found surfaces which have one end and are of genera one and two. The genus one C-G surface was generalized by Karcher [K] and the genus two C-G surface was generalized by Thayer [T]. These generalizations are similar to C-G surfaces, but with higher winding order at the end.

Since minimal surfaces in \mathbb{R}^3 are given by Weierstrass data and path integrals, we always must check well-definedness of the surfaces, and this is called *the period problem*. Chen-Gackstatter [CG] also gave Weierstrass data for a genus three surface, but they did not solve its period problem. Thayer [T] conjectured that the period problem can be solved for arbitrary genus and gave numerical evidence to support this. Espírito-Santo [E] solved the genus three case with a numerical argument.

Rossman suggested to me *a homotopy argument* (which can be thought of as an intermediate value theorem of several variables) for solving the period problem. Wohlgemuth [W] used the homotopy argument to solve period problems for minimal surfaces with four embedded ends.

In this paper, we solve the period problem of the generalized C-G surfaces for arbitrary genus (2.1) by using the intermediate value theorem of several variables.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A10; Secondary 53C42.