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Abstract. We consider periodic, infinite delay differential equations. We investigate

dissipativeness for these equations. Massat proved that dissipative, periodic, infinite

delay equations have a periodic solution. For our purpose we need a weaker

dissipativeness, so we prove Massat's theorem from this weak dissipativeness in an

elementary way. Then we extend a theorem of Pliss giving a necessary and sufficient

condition for this weak dissipativeness. We also present a theorem using Liapunov

functionals to show the weak dissipativeness and hence the existence of a periodic

solution.

1. Introduction. Let / : RxRd-^Rd be continuous and locally Lipschitz in x

with f(t + Γ, x) = fit, x) for all (ί, x) and some T> 0. We say that the ordinary differential

equation

(1) x' = f{t,x)

is dissipative, if all solutions become bounded by a fixed constant at some time and

remain bounded from that time on. Pliss [9, Theorem 2.1] showed that the ordinary

differential equation is dissipative if and only if there is an r > 0 such that for each

(/0, x0) there is a τ>t0 with |x(τ, t0, x o ) |<r . The author [7] generalized this result for

finite delay differential equations stating that dissipativeness is equivalent to every

solution becoming bounded by a fixed constant for an interval of length 2/z, where h

is the retardation. The author also gave an elementary proof for a result of Hale and

Lopes [3], who proved that dissipativeness implies the existence of a periodic solution

for finite delay equations. The following Lyapunov-type theorem, which can also be

found in [7], proves the existence of a periodic solution through dissipativeness.

THEOREM A. Suppose there are a functional V: Rx%>^>R and constants a,b,

M, U>0 such that

( i ) 0<F(ί,φ),

(ii) V\Uxt)<M and

(iii) V\t,xt)<-a\x\t)\-bfor \x(t)\>U.

Then the solutions of the finite delay differential equation are dissipative.
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