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Abstract. In this paper we investigate the ergodic properties of a positive linear
operator on a vector lattice of real-valued measurable functions on a sigma-finite measure
space. Some results of Ornstein and Brunei are unified and improved.

1. Introduction and definitions. Let (X, 3F, m) be a σ-finite measure space and L
a vector lattice of real-valued measurable functions on (X, 3F, m) under pointwise
operations. Thus we understand that if feL then the function /+(x) = max{/(x), 0} is
also in L and two functions / and g in L are not distinguished provided that f(x) = g(x)
for almost all xeX. Hereafter all statements and relations will be assumed to hold
modulo sets of measure zero. Let Γbe a positive linear operator on L. By this we mean
that if feL+ then TfeL+

9 where L+ is the cone of nonnegative functions in L. T is
said to be countαbly additive if fneL+, fn>fn + 1 a.e. on Xfor each n> 1 and limπ/n = 0
a.e. on X then limw Tfn = 0 a.e. on X. A function / in L+ is called a modification of
/ G L + if there exists an heL+ such that

f=f-h+Th.

It is easily seen that for each n > 0, Tnf is a modification of / . Further, if fx is a
modification of/ and f2 is a modification of/x then f2 is a modification of/. A convex
combination of modifications of / is a modification of / .

Given a ueL+, we define a subspace L(u) of L by

r N

L{u) = \feL\\f\<NΣ Γfcw for some Λ̂ >

It is clear that L(u) is a vector lattice and Ί\L(ύj) c= L(u). When we consider the ergodic
ratios

Σ τ*f
RVJ,9)=™ with f,geϋ ,
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