Tohoku Math. J. 51 (1999), 75–79

HYPERGEOMETRIC POLYNOMIALS OVER FINITE FIELDS

MASAO KOIKE*

(Received August 25, 1997, revised June 12, 1998)

Abstract. Honda found certain hypergeometric polynomials over the prime field which can be expressed as a product of linear factors. In this paper we give a different proof of his result by using elementary functions described by hypergeometric series of Gauss. We can find another hypergeometric polynomials which Honda missed.

Introduction. Let p be any odd prime and let F_p denote the prime field of characteristic p. For any a in F_p and $0 \le n \in \mathbb{Z}$, we put $(a)_0 = 1$ and $(a)_n = a(a+1) \cdots (a+n-1)$ if $n \ge 1$. For any a, b, c in F_p , we define the hypergeometric polynomials over the finite field F_p by

$$F(a, b, c; x) = \sum_{n=0}^{\infty} \frac{(a)_n (b)_n}{(1)_n (c)_n} x^n,$$

where we stop the sum as soon as the numerator vanishes and assume that the denominator does not vanish before the numerator does.

These polynomials have already appeared in Deuring [1], Igusa [4], Ihara [5], Honda [3] and others.

Honda [3] proved the following result: Let $p \ge 5$ and let ϕ denote the Legendre character of F_p . For any $\varepsilon, \varepsilon' \in \{1, -1\}$, we define

$$\begin{split} S_{\varepsilon,\varepsilon'} &= \{ a \in \boldsymbol{F}_p^{\times} \mid \phi(a) = \varepsilon, \ \phi(1-a) = \varepsilon' \} \ , \\ F_{\varepsilon,\varepsilon'}(x) &= \prod_{a \in S_{\varepsilon,\varepsilon'}} (x-a) \ . \end{split}$$

Then Honda proved:

THEOREM 0.1 (Honda).

$$F_{-1,-1}(x) = a_{-1,-1}^{(p)} \cdot F\left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{2}; x\right),$$

$$F_{-1,1}(x) = a_{-1,1}^{(p)} \cdot F\left(\frac{1}{4}, \frac{3}{4}, \frac{3}{2}; x\right),$$

where $a_{\varepsilon,\varepsilon'}^{(p)}$ is a constant which takes value 1, 2 or 1/2.

^{*} This research was partially supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11T06.