HYPERGEOMETRIC POLYNOMIALS OVER FINITE FIELDS

Masao Koike*

(Received August 25, 1997, revised June 12, 1998)

Abstract

Honda found certain hypergeometric polynomials over the prime field which can be expressed as a product of linear factors. In this paper we give a different proof of his result by using elementary functions described by hypergeometric series of Gauss. We can find another hypergeometric polynomials which Honda missed.

Introduction. Let p be any odd prime and let \boldsymbol{F}_{p} denote the prime field of characteristic p. For any a in \boldsymbol{F}_{p} and $0 \leq n \in \boldsymbol{Z}$, we put $(a)_{0}=1$ and $(a)_{n}=a(a+1) \cdots$ $(a+n-1)$ if $n \geq 1$. For any a, b, c in \boldsymbol{F}_{p}, we define the hypergeometric polynomials over the finite field \boldsymbol{F}_{p} by

$$
\boldsymbol{F}(a, b, c ; x)=\sum_{n=0} \frac{(a)_{n}(b)_{n}}{(1)_{n}(c)_{n}} x^{n},
$$

where we stop the sum as soon as the numerator vanishes and assume that the denominator does not vanish before the numerator does.

These polynomials have already appeared in Deuring [1], Igusa [4], Ihara [5], Honda [3] and others.

Honda [3] proved the following result: Let $p \geq 5$ and let ϕ denote the Legendre character of \boldsymbol{F}_{p}. For any $\varepsilon, \varepsilon^{\prime} \in\{1,-1\}$, we define

$$
\begin{gathered}
S_{\varepsilon, \varepsilon^{\prime}}=\left\{a \in \boldsymbol{F}_{p}^{\times} \mid \phi(a)=\varepsilon, \phi(1-a)=\varepsilon^{\prime}\right\}, \\
F_{\varepsilon, \varepsilon^{\prime}}(x)=\prod_{a \in S_{\varepsilon, \varepsilon^{\prime}}}(x-a) .
\end{gathered}
$$

Then Honda proved:
Theorem 0.1 (Honda).

$$
\begin{gathered}
F_{-1,-1}(x)=a_{-1,-1}^{(p)} \cdot \boldsymbol{F}\left(-\frac{1}{4}, \frac{1}{4}, \frac{1}{2} ; x\right), \\
F_{-1,1}(x)=a_{-1,1}^{(p)} \cdot \boldsymbol{F}\left(\frac{1}{4}, \frac{3}{4}, \frac{3}{2} ; x\right),
\end{gathered}
$$

where $a_{\varepsilon, \varepsilon^{\prime}}^{(p)}$ is a constant which takes value 1,2 or $1 / 2$.

[^0]
[^0]: * This research was partially supported by the Grant-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan.

 1991 Mathematics Subject Classification. Primary 11T06.

