Tôhoku Math. Journ. 23(1971), 535-539.

K-CONTACT RIEMANNIAN MANIFOLDS ISOMETRICALLY IMMERSED IN A SPACE OF CONSTANT CURVATURE

TOSHIO TAKAHASHI AND SHÛKICHI TANNO

(Received April 19, 1971)

Introduction. A K-contact Riemannian manifold (M, ξ, g) is a Riemannian manifold (M, g) admitting a unit Killing vector field ξ satisfying

(1.1)
$$R(X,\xi)\xi = g(X,\xi)\xi - X$$

where R donotes the Riemannian curvature tensor of (M, g). A K-contact Riemannian manifold is Sasakian, if we have

(1.2)
$$R(X,\xi)Z = g(X,Z)\xi - g(\xi,Z)X.$$

In the preceding papers [3] and [4], each of the present authors studied isometric immersions of Sasakian manifolds (M^m, ξ, g) in a space $(*M^{m+1}, G)$ of constant curvature. Now we show that the results are generalized to K-contact Riemannian manifolds.

THEOREM A. If a K-contact Riemannian manifold (M^m, ξ, g) is isometrically immersed in a space $(*M^{m+1}, G)$ of constant curvature, then (M^m, ξ, g) is Sasakian.

This theorem gives a sufficient condition for a K-contact Riemannian manifold to be Sasakian.

By Theorem A above and the first theorem in [4], we have

THEOREM B. Let (M^m, ξ, g) be a K-contact Riemannian manifold which is isometrically immersed in a space $(*M^{m+1}, G)$ of constant curvature 1. Then (i) the type number $k \leq 2$, and

(ii) (M^m, ξ, g) is of constant curvature 1 if and only if the scalar curvature S = m(m-1).

By a theorem of B.O'Neill and E.Stiel [1] that a complete Riemannian manifold (M^m, g) of constant curvature C > 0 which is isometrically immersed in a