OPERATORS WITH α -CLOSED RANGE

JOHN ERNEST

(Received July 20, 1971)

Let \mathscr{H} denote a Hilbert space of infinite dimension h. In an earlier work we have introduced the notion of α -closed subspace, where α is a cardinal, $\aleph_0 \leq \alpha \leq h$ (definition 2.1 of [2]). A subspace \mathscr{H} of \mathscr{H} is called α -closed if there is a closed subspace \mathscr{L} of \mathscr{H} such that $\mathscr{L} \subset \mathscr{H}$ and such that

$$\dim(\mathscr{L}^{\perp}\cap\mathscr{K})^{-} < \alpha$$

This notion is of interest only when $\alpha > \aleph_0$, since a subspace \mathcal{K} is \aleph_0 -closed if and only if it is closed (lemma 2.3 of [2]). This concept is important for the study of operators on nonseparable spaces, as it is used in characterizing invertibility modulo the closed two-sided ideals of the algebra $\mathcal{L}(\mathcal{H})$ of all bounded operators on \mathcal{H} . (Cf. definition 2.7 and theorems 2.6 and 2.8 of [2].) For each α , $\aleph_0 \leq \alpha \leq h$, let \mathscr{I}_{α} denote the set of operators of rank $\rho(A)$ less than α and let \mathcal{J}_{α} denote the norm closure of \mathcal{J}_{α} . Then the \mathcal{J}_{α} , $\aleph_0 \leq \alpha \leq h$ are precisely the closed twosided ideals of $\mathscr{L}(\mathscr{H})$, and the elements of \mathscr{J}_{α} are called α -compact operators. (Cf. [5] and theorem 0 of [2].) In this terminology, the \aleph_0 compact operators are precisely the compact operators. Then the operators which are invertible modulo \mathcal{J}_{α} (i.e., the operators A in $\mathcal{L}(\mathcal{H})$ for which there exists an operator A' in $\mathscr{L}(\mathscr{H})$ such that $I - AA' \in \mathscr{J}_{\alpha}$ and $I - A'A \in \mathcal{J}_{\alpha}$) are precisely the α -Fredholm operators. An operator A is called α -Fredholm if its range is α -closed and its nullity $\nu(A) < \alpha$ and its corank $\rho'(A) < \alpha$. In this context we see that the notion of an operator having α -closed range is fundamental for the study of operators on a nonseparable space. We therefore examine this new concept in more detail in this paper.

We first obtain a characterization of operators with α -closed range as those which have closed range modulo the ideal \mathscr{I}_{α} . More explicitly, A has α -closed range if and only if there exists an operator C in \mathscr{I}_{α} such that A + C has closed range. This enables us to generalize the well-known fact that A has closed range if and only if A^* has closed range, to the case of operators with α -closed range.

We give two applications of this result. The first gives the conditions