CORRIGENDUM TO: "ON THE STRENGTH OF RAMSEY'S THEOREM FOR PAIRS"

PETER A. CHOLAK, CARL G. JOCKUSCH, JR., AND THEODORE A. SLAMAN

Several proofs given in [2] contain significant errors or gaps, although to our knowledge all results claimed there are provable. The needed corrections are described below. All references are to [2] unless otherwise stated, and we adopt the notation and terminology of that paper.

1. Lemma 7.10 asserts that the principles D_2^2 and SRT_2^2 are equivalent over RCA₀. However, the proof that D_2^2 implies SRT_2^2 has a hidden application of $B\Sigma_2^0$ and thus is actually carried out in RCA₀ + $B\Sigma_2^0$. The problem is that, in the construction of *H* by adding one element at a time, each element *c* added to *H* must form a pair of the appropriate color with all previously chosen elements. To get the existence of such a *c* one seems to need $B\Sigma_2^0$. This gap was recently closed by Chong, Lempp, and Yang, who showed in [3], Theorem 1.4, that, in RCA₀, D_2^2 implies $B\Sigma_2^0$, and hence D_2^2 implies SRT_2^2 .

2. Lemma 7.11 asserts that RT_2^2 is equivalent to SRT_2^2 & COH over RCA₀. However, the proof given there that RT_2^2 implies COH in RCA₀ is seriously flawed. This was pointed out by Joseph Mileti and later by Jeffrey Hirst. A proof that RT_2^2 implies COH in RCA₀ + I Σ_2 can easily be extracted from the proof of Theorem 12.5. Mileti, and simultaneously Lempp and Jockusch, observed that it is possible to eliminate the use of I Σ_2 by effectively bounding in terms of *k* the number of changes in the characteristic function of *A* when it is restricted to A_k , so that proving that this number is finite requires only Σ_1 -induction. Thus, it is provable in RCA₀ that RT_2^2 implies COH, and hence that RT_2^2 is equivalent to SRT_2^2 & COH.

3. Joseph Mileti pointed out a gap in the proof of the claim at the bottom of page 50 that a certain computable 2-coloring of pairs C is "jump universal" in the sense that for every C-homogeneous set A and every computable coloring \tilde{C} , there exists an infinite \tilde{C} -homogeneous set B with $B' \leq_T A'$. The proof provided works only when \tilde{C} is stable. However, this assumption can be eliminated by using the density of the Turing degrees under \ll (see [6], Theorem 6.5) to stabilize \tilde{C} . Namely, by Theorem 12.5 let C be a computable coloring such that every infinite homogeneous set has jump of degree $\gg 0'$, and let A be an infinite homogeneous set for C. Let **d** be the degree of A', so that $\mathbf{d} \gg \mathbf{0}'$. Let \tilde{C} be any computable 2-coloring of pairs. We must show that \tilde{C} has an infinite homogeneous set with jump of degree at most **d**. Let **c** be a degree with $\mathbf{d} \gg \mathbf{c} \gg \mathbf{0}'$, and let **a** be a degree with $\mathbf{a}' = \mathbf{c}$. Since

© 2009, Association for Symbolic Logic 1943-5886/09/7404-0020/\$1.20

Received June 30, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 03F35 03C62 03D80.