CORRIGENDUM TO:

"ON LASCAR RANK AND MORLEY RANK OF DEFINABLE GROUPS IN DIFFERENTIALLY CLOSED FIELDS"

ANAND PILLAY AND WAI YAN PONG

In [3], we proved
Theorem. Let T be an ω-stable theory of Morley rank ω^{α}. Suppose for any ordinal $1 \leq \tau \leq \alpha$ and integer $d \geq 1, T^{e q}$ satisfies the condition:

For any complete type p, if $\mathrm{RM}(p)=\omega^{\tau} d$ then $\mathrm{RU}(p)=\mathrm{R} \mathrm{M}(p)$.
Then Morley rank and U-rank agree for definable groups in $T^{e q}$.
We then claimed [3, Corollary 1.4] that m - DCF_{0}, the theory of characteristic 0 differentially closed fields with m commuting derivations, is an ω-stable theory satisfying $(*)$. However, our proof is not valid. The fallacy is that in justifying $(*)$ for $m-\mathrm{DCF}_{0}$, we used in an essential way the following result ${ }^{1}$ of McGrail [2, Theorem 5.2.2]

If p is a complete type over a model of $m-D C F_{0}$ with Δ-type τ and typical Δ-dimension a_{τ}, then $\omega^{\tau} a_{\tau} \leq R U(p)$.
which was shown to be false by Sonat Süer[5]. He constructed, for any $k \geq 1$, U-rank ω types in m-DCF ${ }_{0}(m \geq 2)$ with Δ-type 1 and typical Δ-dimension k. Süer's counter-examples will appear in his forthcoming paper.

At this point, we would like to make two more remarks:

- Our proofs remain valid in the single derivation case. The second author showed that (Theorem 2.7 [4]) in DCF_{0}, if the Morley rank of a type is a limit ordinal then its Morley rank and U-rank coincide.
- Currently, we are not able to decide, for $m \geq 2$, whether $m-\mathrm{DCF}_{0}$ satisfies ($*$) or not. The examples given by Süer all have their Morley ranks and U-ranks equal. Hence they do not show that $m-\mathrm{DCF}_{0}$ fails $(*)$.

REFERENCES

[1] E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, vol. 54, Academic Press, New York-London, 1973.
[2] T. McGrail, The model theory of differentially closed fields with several commuting derivations, this Journal, vol. 65 (2000), no. 2, pp. 885-913.

[^0]
[^0]: Received January 25, 2008.
 ${ }^{1}$ The terminologies here are slightly different from those in [2]. See Remark 4.2.3 in [2] and pp. 129-130 in [1] for the translation between them.

