CORRIGENDUM TO: "ON LASCAR RANK AND MORLEY RANK OF DEFINABLE GROUPS IN DIFFERENTIALLY CLOSED FIELDS"

ANAND PILLAY AND WAI YAN PONG

In [3], we proved

THEOREM. Let T be an ω -stable theory of Morley rank ω^{α} . Suppose for any ordinal $1 \leq \tau \leq \alpha$ and integer $d \geq 1$, T^{eq} satisfies the condition:

For any complete type p, if $\mathbf{RM}(p) = \omega^{\tau} d$ then $\mathbf{RU}(p) = \mathbf{RM}(p)$. (*)

Then Morley rank and U-rank agree for definable groups in T^{eq} .

We then claimed [3, Corollary 1.4] that m-DCF₀, the theory of characteristic 0 differentially closed fields with m commuting derivations, is an ω -stable theory satisfying (*). However, our proof is not valid. The fallacy is that in justifying (*) for m-DCF₀, we used in an essential way the following result¹ of McGrail [2, Theorem 5.2.2]

If p is a complete type over a model of m-DCF₀ with Δ -type τ and typical Δ -dimension a_{τ} , then $\omega^{\tau} a_{\tau} \leq RU(p)$.

which was shown to be false by Sonat Süer[5]. He constructed, for any $k \ge 1$, U-rank ω types in *m*-DCF₀ ($m \ge 2$) with Δ -type 1 and typical Δ -dimension *k*. Süer's counter-examples will appear in his forthcoming paper.

At this point, we would like to make two more remarks:

- Our proofs remain valid in the single derivation case. The second author showed that (Theorem 2.7 [4]) in DCF₀, if the Morley rank of a type is a limit ordinal then its Morley rank and U-rank coincide.
- Currently, we are not able to decide, for m ≥ 2, whether m-DCF₀ satisfies (*) or not. The examples given by Süer all have their Morley ranks and U-ranks equal. Hence they do not show that m-DCF₀ fails (*).

REFERENCES

[1] E. R. KOLCHIN, *Differential algebra and algebraic groups*, Pure and Applied Mathematics, vol. 54, Academic Press, New York–London, 1973.

[2] T. MCGRAIL, The model theory of differentially closed fields with several commuting derivations, this JOURNAL, vol. 65 (2000), no. 2, pp. 885–913.

Received January 25, 2008.

¹The terminologies here are slightly different from those in [2]. See Remark 4.2.3 in [2] and pp. 129–130 in [1] for the translation between them.

© 2009, Association for Symbolic Logic 1943-5886/09/7404-0019/\$1.20