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HOW ENUMERATION REDUCIBILITY YIELDS EXTENDED
HARRINGTON NON-SPLITTING

MARIYA 1. SOSKOVAT AND S. BARRY COOPER¥

§1. Introduction. Sacks [16] showed that every computably enumerable (c.e.)
degree > 0 has a c.e. splitting. Hence, relativising, every c.e. degree has a A
splitting above each proper predecessor (by ‘splitting’ we understand ‘nontrivial
splitting’). Arslanov [1] showed that 0’ has a d.c.e. splitting above each c.e. a < 0'.
On the other hand, Lachlan [11] proved the existence of a c.e. @ > 0 which has no
c.e. splitting above some proper c.e. predecessor, and Harrington [10] showed that
one could take @ = 0. Splitting and nonsplitting techniques have had a number of
consequences for definability and elementary equivalence in the degrees below 0.

Heterogeneous splittings are best considered in the context of cupping and non-
cupping. Posner and Robinson [15] showed that every nonzero A, degree can be
nontrivially cupped to ¢, and Arslanov [1] showed that every c.e. degree > 0 can
be d.c.e. cupped to ¢ (and hence since every d.c.e., or even n-c.e., degree has a
nonzero c.e. predecessor, every n-c.e. degree > 0 is d.c.e. cuppable). Cooper [4]
and Yates (see Miller [13]) showed the existence of degrees noncuppable in the c.e.
degrees. Moreover, the search for relative cupping results was drastically limited
by Cooper [5], and Slaman and Steel [17] (see also Downey [9]), who showed that
there is a nonzero c.e. degree a below which even A, cupping of c.e. degrees fails.

We prove below what appears to be the strongest possible of such nonsplitting
and noncupping results.

THEOREM 1.1. There exists a computably enumerable degree a < 0 such that there
exists no nontrivial cuppings of c.e. degrees above a in the A, degrees above a.

In fact, if we consider the extended structure of the enumeration degrees, Theo-
rem 1.1 is a corollary of the even stronger result:

THEOREM 1.2. There exists a Iy e-degree a < 0, such that there exist no nontrivial
cuppings of 1 e-degrees above a in the X, e-degrees above a.

This would appear to be the first example of a structural feature of the Turing
degrees obtained via a proof in the wider context of the enumeration degrees (rather
than the other way round).
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