DISTINCT ITERABLE BRANCHES

JOHN R. STEEL

§1. Introduction. The basic problem of inner model theory is how to construct mice satisfying hypotheses appreciably stronger than "there is a Woodin limit of Woodin cardinals". We have a family of constructions, the K^c -constructions, which ought to produce such mice under the appropriate hypotheses on V. Perhaps the most important thing we lack is a proof that the countable elementary submodels of premice produced by a K^c -construction are $\omega_1 + 1$ -iterable. The best partial results in this direction are those of Neeman ([4]) for K^c -constructions making use of full background extenders over V, and those of Andretta, Neeman, and Steel ([1]) for arbitrary K^c -constructions.

Let \mathscr{M} be a countable premouse embedded by π into a level of the K^c -construction \mathbb{C} . If \mathbb{C} uses only full extenders over V as its background extenders, then π and \mathbb{C} enable one to lift an evolving iteration tree \mathscr{T} on \mathscr{M} to an iteration tree \mathscr{T}^* on V. (See [3, §12].) The good behavior of \mathscr{T}^* guarantees that of \mathscr{T} . The natural conjecture here is that V is $\omega_1 + 1$ -iterable with respect to such trees \mathscr{T}^* by the strategy of choosing the unique wellfounded branch. The open question here is uniqueness, since by [2] the uniqueness of the wellfounded branch chosen by \mathscr{T}^* at limit stages strictly less than λ implies the existence of a wellfounded branch to be chosen at λ .\(^1\) There is reasonably good evidence for the truth of this conjecture, at least in the case π is lexicographically minimal among all embeddings of \mathscr{M} to a model of \mathbb{C} . (See [5] for a discussion.)\(^2

In many situations, one must rely on K^c -constructions making use of partial background extenders. Given a countable \mathcal{M} embedded by π into a level of such a construction \mathbb{C} , it is no longer possible to use π and \mathbb{C} to lift iteration trees on \mathcal{M} to trees on V, and so the conjecture of the last paragraph doesn't make sense. Instead of branches which lift to wellfounded branches of a tree on V, what we get here from the basic existence Theorem of $[6, \S 9]$, for countable trees \mathcal{T} on \mathcal{M} , is a maximal branch b of \mathcal{T} such that b is π -realizable. (If b does not drop, then letting \mathcal{N} be the target model for π , this means that there is a $\sigma \colon \mathcal{M}_b^{\mathcal{T}} \to \mathcal{N}$ such that $\pi = \sigma \circ i_b^{\mathcal{T}}$. See [6] for the full definition.) There may be more than one π -realizable branch (see $[2, \S 5]$), but if π is lexicographically minimal with respect

Received December 10, 2003; revised October 6, 2004.

 $^{^1}$ Here we assume the background extenders of $\mathbb C$ are all 2^{\aleph_0} -closed. This can be arranged easily in applications.

 $^{^2}$ Woodin has constructed an iteration tree on V having distinct cofinal, wellfounded branches, however, his tree is not induced by a tree on a premouse.