CORRIGENDUM TO: ON THE EXCEPTIONAL SET OF HARDY-LITTLEWOOD'S NUMBERS
 IN SHORT INTERVALS

By

A. Languasco

Let $k \geq 2$ be an integer. In the paper [1] we proved a result on the set E_{k} of the integers which are neither a sum of a prime and a k-power nor a k-power of an integer. Setting $E_{k}(X)=E_{k} \cap[1, X]$ and $E_{k}(X, H)=E_{k} \cap[X, X+H]$, where X is a sufficiently large parameter and $H=o(X)$, our statement is

Theorem. Let $k \geq 2$ be a fixed integer and $K=2^{k-2}$. There exists a (small) positive absolute constant δ such that for $H \geq X^{7 / 12(1-1 / k)+\delta}$

$$
\left|E_{k}(X, H)\right| \ll H^{1-\delta /(5 K)}
$$

In fact our proof is not totally correct. There are two corrections to do. The first one is that the level Q of the the Farey dissection has to be fixed equal to $2 k Y^{1-1 / k}$ instead of $4 Y^{1-1 / k}$ since, in the proof of Lemma 10 of [1], such a condition is needed to estimate, by using the first derivative method, the order of magnitude in a Farey arc of

$$
F_{k}(\alpha)=\sum_{Y / 4 \leq m^{k} \leq Y} e\left(m^{k} \alpha\right)
$$

where $Y=X^{7 / 12+10 \delta+\varepsilon}$ and $e(\alpha)=e^{2 \pi i \alpha}$. We write here the corrected version of Lemma 10 of [1] whose proof is a slight modification of what Perelli-Zaccagnini [3], eq. (39)-(40), proved.

Lemma 10 of [1]. Let $(a, q)=1, Q \geq 2 k Y^{1-1 / k}$ and $|\eta| \leq 1 / q Q$. Then

$$
\left|F_{k}\left(\frac{a}{q}+\eta\right)\right| \ll \frac{Y^{1 / k-1}}{|\eta|}
$$

[^0]
[^0]: Received October 12, 2005.

