KENMOTSU TYPE REPRESENTATION FORMULA FOR SPACELIKE SURFACES IN THE DE SITTER 3-SPACE

By

Reiko AIYAMA and Kazuo AKUTAGAWA

Introduction

In [10], Kenmotsu proved that surfaces in the Euclidean 3-space E^3 can be represented by means of the mean curvature and the Gauss map. In [3] and [4], we gave the Kenmotsu type representation formulas for surfaces in the hyperbolic 3-space (cf. [11]) and the Riemannian 3-sphere. For each Riemannian 3-space form N^3 and a surface M^2 in N^3 , we can consider an adapted frame on M^2 as a map from M^2 to the isometry group $Isom(N^3)$. The 'Gauss map' of M^2 to $S^2(=SO(3)/SO(2))$ is defined from the 'rotational part' (i.e., SO(3)-part) of the adapted framing map. (For example, $Isom(E^3) = R^3 \rtimes SO(3)$.)

On the other hand, Nishikawa and the second author [8] proved the Lorentzian version of the Kenmotsu representation formula for spacelike surfaces in the Minkowski 3-space L^3 (cf. [12]). Here $\text{Isom}(L^3) = R^3 \rtimes SO_0(1,2)$ and hence the Gauss map is a map to the upper hyperboloid H^2 (= $SO_0(1,2)/SO(2)$). In this paper, we introduce the Kenmotsu type representation formula for spacelike surfaces in the Lorentzian 3-space form of constant curvature 1, that is, the de Sitter 3-space S_1^3 . A similar formula in the anti-de Sitter 3-space has been already given in [6].

1. De Sitter 3-space S_1^3

The de Sitter 3-space S_1^3 is defined as the semi-sphere in the Minkowski 4space L^4 of radius 1. As in [9] and [1], it is convenient to use the complex special linear group SL(2; C), which is the double cover of $SO_0(1,3)$, as the group of isometries of S_1^3 . Put

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A10; Secondary 53C50. Received April 20, 1999 Revised May 30, 2000