# AREA-MINIMIZING OF THE CONE OVER SYMMETRIC R-SPACES 

By<br>Daigo Hirohashi, Takahiro Kanno and Hiroyuki Tasaki

## Introduction

Let $B$ denote a submanifold of the unit sphere in $\boldsymbol{R}^{n}$ and $C_{B}$ the cone over $B$, which is the union of rays starting from the origin and passing through $B$.

A cone is called area-minimizing if the truncated cone $C_{B}^{1}$ inside the unit ball is area-minimizing among all surfaces with boundary $B$. The surfaces we will use are integral currents. A tangent cone to surface $S$ at a point $p \in S$ can be thought of as the union of rays starting from $p$ and tangent to $S$ at $p$. This is the generalization of the notion of tangent plane. If the tangent cone at $p$ is not a plane, then $p$ is a singular point of $S$. If $S$ is area-minimizing, then each tangent cone to $S$ is area-minimizing. Thus in order to study area-minimizing surface with singularities, we need to know which cones are area-minimizing.
G. R. Lawlor proposed a criterion for area-minimization in [5]. His principal idea is to construct an area-nonincreasing retraction $\Pi: \boldsymbol{R}^{n} \rightarrow C$. If $S$ is another surface which has the same boundary as $C_{B}^{1}$, it will follow that

$$
\operatorname{vol}(S) \geq \operatorname{vol}(\Pi(S)) \geq \operatorname{vol}\left(C_{B}^{1}\right)
$$

since $\Pi(S)$ must cover all of $C_{B}^{1}$. Using this method, he gave a complete classification of area-minimizing cones $C$ over products of spheres and the first example of minimizing cone over a nonorientable manifold. In order to construct the retraction he solved a differential equation with numerical analysis.

In this paper, we consider the canonical imbeddings of symmetric $R$-spaces which are linear isotropy orbits of symmetric pairs. Using root systems, we construct area-nonincreasing retractions concretely.

In section 1 we prepare some notation and terminology, and prove an essential theorem (Theorem 1.6) for construction of the retractions. In section 2 we describe the canonical imbeddings of symmetric $R$-spaces, and construct

