ON SPACES WITH LINEARLY HOMEOMORPHIC FUNCTION SPACES IN THE COMPACT OPEN TOPOLOGY

Dedicated to Professor Akihiro Okuyama on his sixtieth birthday

By

Haruto Ohta and Kohzo Yamada

1. Introduction

For a space X, let C(X) be the linear space of all real-valued continuous functions on X, and let $C_0(X)$ (resp. $C_p(X)$) denote the linear topological space C(X) with the compact-open (resp. pointwise convergence) topology. We say that spaces X and Y are l_0 -equivalent (resp. l_p -equivalent) if $C_0(X)$ and $C_0(Y)$ (resp. $C_p(X)$ and $C_p(Y)$) are linearly homeomorphic. For an ordinal number α , let $X^{(\alpha)}$ be the α -th derived set of a space X, where $X^{(0)} = X$. Recall from [3] that an ordinal α is prime if it satisfies the following condition: If $\alpha = \beta + \gamma$, then $\gamma = 0$ or $\gamma = \alpha$. Note that 0 and 1 are only finite prime ordinals. For $\alpha \ge \omega$, α is prime if and only if there is an ordinal $\mu \ge 1$ such that $\alpha = \omega^{\mu}$ (cf. [3, Theorem 2.1.21]). Thus, $\omega, \omega^2, \omega^3, \ldots$ and the first uncountable ordinal ω_1 are prime. The purpose of this paper is to improve some theorems in Baars and de Groot [3] by proving the following theorem:

THEOREM 1. Let X and Y be l_0 -equivalent metric spaces. For each prime ordinal $\alpha \leq \omega_1$, we have:

(a) $X^{(\alpha)} = \emptyset$ if and only if $Y^{(\alpha)} = \emptyset$,

(b) $X^{(\alpha)}$ is compact if and only if $Y^{(\alpha)}$ is compact,

(c) $X^{(\alpha)}$ is locally compact if and only if $Y^{(\alpha)}$ is locally compact.

Baars and de Groot proved (a), (b) and (c) in Theorem 1 for $\alpha = 0, 1$ under the additional assumption that X and Y are 0-dimensional and separable ([3, Theorems 4.5.2 and 4.5.3]). For l_p -equivalent metric spaces X and Y, they proved (a) for each prime $\alpha \leq \omega_1$ ([3, Theorems 4.1.15 and 4.1.17]), and proved (b) and

Received May 7, 1996 Revised July 7, 1997