ON SELF-INJECTIVE DIMENSIONS OF ARTINIAN RINGS

By

Mitsuo Hoshino

Throughout this note R stands for a left and right artinian ring unless specified otherwise. We denote by $\bmod R\left(\right.$ resp. $\left.\bmod R^{\circ \mathrm{p}}\right)$ the category of all finitely generated left (resp. right) R-modules and by ()* both the R-dual functors. For an $X \in \bmod R$, we denote by $\varepsilon_{X}: X \rightarrow X^{* *}$ the usual evaluation map, by $E(X)$ its injective envelope and by $[X]$ its image in $K_{0}(\bmod R)$, the Grothendieck group of $\bmod R$.

In this note, we ask when $\operatorname{inj} \operatorname{dim}_{R} R=\operatorname{inj} \operatorname{dim} R_{R}$. Note that if inj $\operatorname{dim}_{R} R$ $<\infty$ and $\operatorname{inj} \operatorname{dim} R_{R}<\infty$ then by Zaks [10, Lemma A] $\operatorname{inj} \operatorname{dim}_{R} R=\operatorname{inj} \operatorname{dim} R_{R}$. So we ask when $\operatorname{inj} \operatorname{dim} R_{R}<\infty$ implies $\operatorname{inj} \operatorname{dim}_{R} R<\infty$. There has not been given any example of R with $\operatorname{inj} \operatorname{dim}_{R} R \neq \operatorname{inj} \operatorname{dim} R_{R}$. However, we know only a little about the question. By Eilenberg and Nakayama [5, Theorem 18], ${ }_{R} R$ is injective if and only if so is R_{R}. In case R is an artin algebra, we know from the theory of tilting modules that $\operatorname{inj} \operatorname{dim}_{R} R \leqq 1$ if and only if $\operatorname{inj} \operatorname{dim} R_{R} \leqq 1$ (see Bongartz [3, Theorem 2.1]). Also, if R is of finite representation type, it is well known and easily checked that inj $\operatorname{dim}_{R} R<\infty$ if and only if inj $\operatorname{dim} R_{R}$ $<\infty$.

Suppose inj $\operatorname{dim} R_{R}<\infty$. Then we have a well defined linear map

$$
\delta: K_{0}\left(\bmod R^{\mathrm{op}}\right) \longrightarrow K_{0}(\bmod R)
$$

such that

$$
\delta([M])=\sum_{i \geq 0}(-1)^{i}\left[\operatorname{Ext}_{R}^{i}(M, R)\right]
$$

for $M \in \bmod R^{o p}$. Since R is artinian, both $K_{0}\left(\bmod R^{o p}\right)$ and $K_{0}(\bmod R)$ are finitely generated free abelian groups of the same rank. Also, for an $M \in$ $\bmod R^{\text {op }},[M]=0$ if and only if $M=0$. Thus $\operatorname{inj} \operatorname{dim}_{R} R<\infty$ if (and only if) the following two conditions are satisfied:
(a) δ is surjective.
(b) There is an integer $d \geqq 1$ such that $\delta\left(\left[\operatorname{Ext}_{R}^{d}(X, R)\right]\right)=0$ for all $X \in \bmod R$.

In this note, along the principle above, we will prove the following

[^0]
[^0]: Received August 26, 1991. Revised March 15, 1993.

