ON SELF-INJECTIVE DIMENSIONS OF ARTINIAN RINGS

By

Mitsuo Hoshino

Throughout this note R stands for a left and right artinian ring unless specified otherwise. We denote by mod R (resp. mod R^{op}) the category of all finitely generated left (resp. right) R-modules and by ()* both the R-dual functors. For an $X \in \text{mod } R$, we denote by $\varepsilon_X : X \to X^{**}$ the usual evaluation map, by E(X) its injective envelope and by [X] its image in $K_0 \pmod{R}$, the Grothendieck group of mod R.

In this note, we ask when inj dim $_{R}R$ =inj dim R_{R} . Note that if inj dim $_{R}R$ $<\infty$ and inj dim $R_{R}<\infty$ then by Zaks [10, Lemma A] inj dim $_{R}R$ =inj dim R_{R} . So we ask when inj dim $R_{R}<\infty$ implies inj dim $_{R}R<\infty$. There has not been given any example of R with inj dim $_{R}R \neq$ inj dim R_{R} . However, we know only a little about the question. By Eilenberg and Nakayama [5, Theorem 18], $_{R}R$ is injective if and only if so is R_{R} . In case R is an artin algebra, we know from the theory of tilting modules that inj dim $_{R}R \leq 1$ if and only if inj dim $R_{R} \leq 1$ (see Bongartz [3, Theorem 2.1]). Also, if R is of finite representation type, it is well known and easily checked that inj dim $_{R}R < \infty$ if and only if inj dim $R_{R} < \infty$.

Suppose inj dim $R_R < \infty$. Then we have a well defined linear map

$$\delta: K_0 (\mathrm{mod} \ R^{\mathrm{op}}) \longrightarrow K_0 (\mathrm{mod} \ R)$$

such that

$$\delta([M]) = \sum_{i \ge 0} (-1)^{i} [Ext_{R}^{i}(M, R)]$$

for $M \in \text{mod } R^{\circ p}$. Since R is artinian, both $K_0 \pmod{R^{\circ p}}$ and $K_0 \pmod{R}$ are finitely generated free abelian groups of the same rank. Also, for an $M \in \text{mod } R^{\circ p}$, [M]=0 if and only if M=0. Thus inj dim $R < \infty$ if (and only if) the following two conditions are satisfied:

- (a) δ is surjective.
- (b) There is an integer $d \ge 1$ such that $\delta([\operatorname{Ext}_R^d(X, R)]) = 0$ for all $X \in \operatorname{mod} R$.

In this note, along the principle above, we will prove the following Received August 26, 1991. Revised March 15, 1993.