COVERING PROPERTIES IN COUNTABLE PRODUCTS

By

Hidenori TANAKA

1. Introduction.

A space X is said to be subparacompact if every open cover of X has a σ discrete closed refinement, and metacompact (countably metacompact) if every open cover (countable open cover) of X has a point finite open refinement. A space X is said to be metalindelöf if every open cover of X has a point countable open refinement. A collection \mathcal{U} of subsets of a space X is said to be interior-preserving if $\operatorname{int}(\cap \mathcal{V}) = \cap \{\operatorname{int} V : V \in \mathcal{V}\}$ for every $\mathcal{V} \subset \mathcal{U}$. Clearly, an open collection \mathcal{U} is interior-preserving if and only if $\cap \mathcal{V}$ is open for every $\mathcal{V} \subset \mathcal{U}$. A space X is said to be orthocompact if every open cover of X has an interior-preserving open refinement. Every paracompact Hausdorff space is subparacompact and metacompact, and every metacompact space is countably metacompact, metalindelöf and orthocompact. The reader is refered to D.K. Burke [4] for a complete treatment of these covering properties and some informations of their role in general topology.

Let \mathcal{DC} be the class of all spaces which have a discrete cover by compact sets. The topological game $G(\mathcal{DC}, X)$ was introduced and studied by R. Telgársky [19]. The games are played by two persons called Players I and II. Players I and II choose closed subsets of II's previous play (or of X, if n=0): Player I's choice must be in the class \mathcal{DC} and II's choice must be disjoint from I's. We say that Player I wins if the intersection of II's choices is empty. Recall from [19] that a space X is said to be \mathcal{DC} -like if Player I has a winning strategy in $G(\mathcal{DC}, X)$. The class of \mathcal{DC} -like spaces includes all spaces which admit a σ -closure-preserving closed cover by compact sets, and regular subparacompact, σ -C-scattered spaces.

Paracompactness and Lindelöf property of countable products have been studied by several authors. In particular, if X is a separable metric space or X is a regular Čech-complete Lindelöf space or X is a regular C-scattered Lindelöf space, then $X^{\omega} \times Y$ is Lindelöf for every regular hereditarily Lindelöf space Y. The first result is due to E. Michael (cf. [14]) and the second one

Received June 10, 1992, Revised February 1, 1993.