ON PRIME TWINS

In honorem Professoris Saburô Uchiyama annos LX nati

By
Hiroshi Mikawa

1. Introduction.

It has long been conjectured that there exist infinitely many prime twins. There is even the hypothetical asymptotic formula for the number of prime pairs. Let

$$
\Psi(y, 2 k)=\sum_{2 k<n \leqslant y} \Lambda(n) \Lambda(n-2 k)
$$

where Λ is the von Mangoldt function, then it is expected that

$$
\begin{equation*}
\Psi(y, 2 k) \sim \subseteq(2 k)(y-2 k) \quad \text { as } \quad y \rightarrow \infty \tag{*}
\end{equation*}
$$

with

$$
\text { S }(2 k)=2 \prod_{p>2}\left(1-\frac{1}{(p-1)^{2}}\right) \prod_{\substack{p>k \\ p>2}}\left(\frac{p-1}{p-2}\right) .
$$

No proof of these has ever been given.
But it is well known that the above ($*$) is valid for almost all $k \leqq y / 2$. Recently, D. Wolke [4] has refined this classical result. He showed that in the range

$$
2 x \leqq y \leqq x^{8 / 5-\varepsilon}, \quad \varepsilon>0,
$$

the formula (*) holds true for almost all $k \leqq x$. Moreover he remarked that, on assuming the density hypothesis for L-series, the exponent $8 / 5$ may be replaced by 2 .

In the present paper we shall improve this exponent beyond 2.
Theorem. Let ε, A and $B>0$ be given and

$$
2 x \leqq y \leqq x^{3-8} .
$$

Then, except possibly for $O\left(x(\log x)^{-4}\right)$ integers $k \leqq x$, we have

$$
\Psi(y, 2 k)=\Xi(2 k)(y-2 k)+O\left(y(\log y)^{-B}\right)
$$

where the implied O-constants depend only on ε, A and B.

[^0]
[^0]: Received June 5, 1990

