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1. Introduction.

It has long been conjectured that there exist infinitely many prime twins.
There is even the hypothetical asymptotic formula for the number of prime
pairs. Let

$\Psi(y, 2k)=\sum_{2k<n\leq y}\Lambda(n)\Lambda(n-2k)$

where $\Lambda$ is the von Mangoldt function, then it is expected that

$(*)$ $\Psi(y, 2k)\sim \mathfrak{S}(2k)(y-2k)$ as $ y\rightarrow\infty$

with

$\mathfrak{S}(2k)=2\prod_{p>2}(1-\frac{1}{(p-1)^{2}})\prod_{p1,p>^{k_{2}}}(\frac{p-1}{p-2})$ .

No proof of these has ever been given.
But it is well known that the above $(*)$ is valid for almost all $k\leqq y/2$ .

Recently, D. Wolke [4] has refined this classical result. He showed that in
the range

$2x\leqq y\leqq x^{8/5-\epsilon}$ , $\epsilon>0$ ,

the formula $(*)$ holds true for almost all $k\leqq x$ . Moreover he remarked that,
on assuming the density hypothesis for L-series, the exponent 8/5 may be
replaced by 2.

In the present paper we shall improve this exponent beyond 2.

THEOREM. Let $\epsilon,$
$A$ and $B>0$ be given and

$2x\leqq y\leqq x^{3-\epsilon}$ .
Then, except possibly for $O(x(\log x)^{-A})$ integers $k\leqq x$ , we have

$\Psi(y, 2k)=\mathfrak{S}(2k)(y-2k)+O(y(\log y)^{-B})$

where the implied O-constants depend only on $\epsilon,$
$A$ and $B$ .

Received June 5, 1990


