HYPERSURFACES IN THE QUATERNIONS II

By

Hideya НАЅНІМОТО

1. Introduction.

Let $\mathbf{H} = \operatorname{span}_{\mathbf{R}}\{1, i, j, k\}$ be the quaternions. We shall fix the basis $\{1, i, j, k\}$ throughout this paper. Then, we may regard **H** as a 4-dimensional Euclidean space \mathbf{R}^4 in the natural way. An oriented hypersurface M^3 in \mathbf{H} admits a global orthonormal frame field as follows. Let (M^3, f) be an oriented hypersurface of **H** and ξ a unit normal vector field on M³. Then $\{\xi_i, \xi_j, \xi_k\}$ is a global orthonormal frame field on $f(M^{s})$. We shall call this orthonormal frame field an associated one of $f(M^3)$ and the dual frame field of $\{\xi i, \xi j, \xi k\}$ as associated dual frame field, respectively. We may remark that the associated frame field on M^3 (intrinsically) of an oriented hypersurface (M^3 , af) in **H** coincides with the associated one of the hypersurface (M³, f) for any $a \in Sp(1)$. We note that the associated frame field of (M^3, bf) are different from the associated one of (M^3, f) for $b \in SO(4)$ and $b \notin Sp(1)$. This paper is a continuation of the previous one ([3]). Let x be the unit normal vector field of a unit 3-sphere S^3 in H, then the vector fields $\{xi, xj, xk\}$ are killing vector fields on S³ (see [3], [5]), and each integral curve of xi (or xj or xk) is a geodesic in S³ and a circle in **H**. We shall prove the followings:

THEOREM A. Let (M^3, f) be an oriented hypersurface in the quaternions **H** and ξ a global normal vector field of M^3 in **H**. If each 1-form of the associated dual frame field on M^3 is a contact form on M^3 and each integral curve of the associated orthonormal frame field is a circle in **H**, then

(1) M^3 is locally isometric to a 3-dimensional round sphere in H and the immersion f is totally umbilic,

or

(2) M^3 is locally isometric to $S^1 \times \mathbb{R}^2$ (S^1 is a circle) and the immertion f is a locally product one.

TEEOREM B. Let (M^3, f) be an oriented complete hypersurface in the quaternions **H** and ξ a global unit normal vector field of M^3 in **H**. If each integral Received April 20, 1988 Revised August 29, 1988.