ON LORENTZ MANIFOLDS WITH ABUNDANT ISOMETRIES

By
Hiroo Matsuda

0. Introduction.

Let M be an n-dimensional Lorentz manifold with metric \langle,$\rangle of signature$ $(-,+, \cdots,+)$. Then there is no r-dimensional isometry group whose isotropy subgroup at every point is compact for $n(n-1) / 2+1<r \leqq n(n+1) 2$ (c.f., [5], Proposition). In [6], we determined n-dimensional Lorentz manifolds M which admit an $n(n-1) / 2+1$-dimensional isometry group with compact isotropy subgroup at every point for $n \geqq 4$.

The first purpose of this note is to determine simply connected M admitting an $n(n-1) / 2$-dimensional isometry group with compact isotropy subgroup at every point for $n \geqq 4$ (see $\S 2$). We will prove the following Theorem A.

Theorem A. Let $(M,\langle\rangle$,$) be a simply connected n$-dimensional Lorentz manifold admitting a connected $n(n-1) / 2$-dimensional isometry group with compact isotropy subgroup at every point in $M(n \geqq 4)$. Then M is isometric to the warped product manifold ($I \times N,-d t^{2}+\phi(t) d s_{N}^{2}$) where I is an open interval and N is the simply connected ($n-1$)-dimensional Riemannian manifold with metric $d s_{N}^{2}$ of constant curvature and $\phi(t)$ is a positive function on I.

For isometry groups whose dimension are less than $n(n-1) / 2$, we will have the following proposition in $\S 1$.

Proposition 1.1. If $n \geqq 6$, there is no r-dimensional isometry group with compact isotropy subgroup at every point for $(n-1)(n-2) / 2+3 \leqq r \leqq n(n-1) / 2-1$.

In view of Proposition 1.1, it is natural to ask which Lorentz manifold of dimension n admits an $(n-1)(n-2) / 2+2$-dimensional isometry group with compact isotropy subgroup. The second purpose of this note is to determine simply connected manifold M admitting an isometry group of dimension $(n-1)(n-2) / 2+2$ with compact isotropy subgroup at every point (see §3). We will prove the following Theorem B.

[^0]
[^0]: Received August 24, 1987. Revised April 7, 1988.

