A GENERALIZATION OF A RESULT OF K. R. JOHNSON

By
Don Redmond

In [2], Grytczuk showed that

$$
\sum_{d \backslash k}\left|c_{d}(n)\right|=z^{\omega(k /(k, n))}(k, n),
$$

where $c_{k}(n)$ denotes Ramanujan's trigonometric sum and $\omega(m)$ counts the number of distinct prime divisors of m. In [3], Johnson evaluated the sum

$$
\sum_{d \backslash n}\left|c_{k}(d)\right|
$$

In [4], I generalized the result of Grytczuk to a larger class of functions. In this paper I generalize the result of Johnson.

If h is an arithmetic function, we define the arithmetic function H_{k} by

$$
\begin{equation*}
H_{k}(n)=\sum_{d \mid(k, n)} \mu(k / d) h(d) . \tag{1}
\end{equation*}
$$

In [4] it is shown that $H_{1}(n)=h(1)$, if $a \geqq 1$,

$$
H_{p^{a}}(n)=\left\{\begin{array}{lll}
h\left(p^{a}\right)-h\left(p^{a-1}\right) & \text { if } p^{a} \mid n \tag{2}\\
-h\left(p^{a-1}\right) & \text { if } p^{a-1} \| n \\
0 & \text { if } p^{a-1} \nmid n
\end{array}\right.
$$

and that $H_{k}(n)$ is a multiplicative function of k. In [4], we investigated the sum

$$
\sum_{d \backslash k}\left|H_{d}(n)\right|
$$

and in this paper we shall investigate the sum

$$
\sum_{d \backslash n}\left|H_{k}(d)\right|
$$

Since $H_{k}(n)$ is not a multiplicative function of n, this task is a little more difficult. We shall assume throughout this paper that h is a multiplicative function.

To make our generalization of Johnson's result as clear as possible we shall follow his notation as closely as possible. In particular, for a given positive integer k we denote by \bar{k} the core of k, that is, the largest square-free divisor of k, and we denote by k^{*} the integer k / \bar{k}.

