FACTORIZATION THEOREM FOR PERFECT MAPS BETWEEN METRIZABLE SPACES

By

Yoshie TAKEUCHI

1. Introduction. We assume that all spaces are normal and all maps are continuous. We write $A \in ANR$ for a space A if A is an ANR for the class of all compact metrizable spaces.

Given spaces X and A we write $\dim X \leq A$ if for any closed subset F of X any map $f: F \to A$ can be extended to X. For a map $\xi: X \to X_0$ we write $\dim \xi \leq A$ if $\dim \xi^{-1}(x_0) \leq A$ for any $x_0 \in X_0$. It is kown that a space X satisfies the relation $\dim X \leq S^n$ for the n-sphere S^n if and only if X satisfies the inequality $\dim X \leq n$ in the sense of the covering dimension.

Our purpose in this paper is to prove the following theorem;

THEOREM. Let $A \in ANR$, let ξ be a closed map of a space X into a paracompact space X_0 , ζ be a perfect map of a metrizable space Z into a metrizable space Z_0 , and let $f: X \to Z$ and $f_0: X_0 \to Z_0$ be maps such that $\zeta f = f_0 \xi$ and $\dim \xi \subseteq A$. Then there are metrizable spaces Y and Y_0 , a perfect map $\eta: Y \to Y_0$, and maps $g: X \to Y$, $g_0: X_0 \to Y_0$, $h: Y \to Z$ and $h_0: Y_0 \to Z_0$ such that $\eta g = g_0 \xi$, $\zeta h = h_0 \eta$, hg = f, $h_0 g_0 = f_0$, $\dim \eta \subseteq A$, $w(Y_0) \subseteq \max(w(X_0), w(Z_0))$, and $\dim Y_0 \subseteq \dim X_0$.

$$X \xrightarrow{g} Y \xrightarrow{h} Z$$

$$\xi \downarrow \qquad \downarrow \eta \qquad \downarrow \zeta$$

$$X_0 \xrightarrow{g_0} Y_0 \xrightarrow{h_0} Z_0$$

For a map $\zeta: Z \to Z_0$ we write $w(\zeta) \leq \tau$ if there is an embedding $i: Z \to Z_0 \times I^{\tau}$ such that $\zeta = \operatorname{pr} i$, where I^{τ} is the Tikhonov cube of weight τ and $\operatorname{pr}: Z_0 \times I^{\tau} \to Z_0$ is the projection.

In [9] Pasynkov proved a similar theorem to the above theorem, in which he added the property that $w(\eta) \le \tau$, if $w(\xi) \le \tau$, in the case that X, X_0 , Z, Z_0 are compact (which are not assumed to be metrizable).

However, in [7] Pasynkov stated that, if f is a perfect map between

Received October 22, 1987.