THE DIFFERENCES BETWEEN CONSECUTIVE ALMOST-PRIMES

By
Hiroshi Mikawa

1. Introduction.

In 1940 P. Erdös [1] proposed the problem to estimate the sum

$$
D(x)=\sum_{p_{n} \leqq x}\left(p_{n+1}-p_{n}\right)^{2}
$$

where p_{n} denotes the n-th prime. A. Selberg [10] and D. R. Heath-Brown [4] proved that

$$
D(x) \ll x(\log x)^{3}
$$

under the Riemann hypothesis, and that, for any $\varepsilon>0$,

$$
D(x) \ll x^{7 / 6+\varepsilon}
$$

under the Lindelöf hypothesis, respectively. Furthermore, Heath-Brown [5] showed unconditionaly that, for any $\varepsilon>0$,

$$
D(x) \ll x^{23 / 18+e}
$$

and he [6] conjectured that

$$
D(x) \sim 2 x(\log x) \quad \text { as } x \rightarrow \infty
$$

U. Meyer considered in his Dissertation the almost-prime analogy of $D(x)$. Let P_{2} denote the set of integers with at most two prime factors, multiple factors being counted multiplicity. We replace the primes in $D(x)$ by the almost-primes P_{2}, and denote the resulting sum $D_{2}(x)$. In [8] he showed, by the weighted version of a zero density estimate for the Riemann zeta-function, that

$$
D_{2}(x) \ll x^{1.285}(\log x)^{10} .
$$

It is the purpose of this paper to make an improvement upon this upper bound.
Theorem. We have

$$
D_{2}(x) \ll x^{1.023}
$$

where the implied constant is effectively computable.
In contrast to the Meyer's argument, we appeal to sieve methods, which are the weighted linear sieve of Greaves' type [3] and the prototype of an additive

[^0]
[^0]: Received May 15, 1986. Revised October 31, 1986.

