PARTIAL COXETER FUNCTORS AND STABLE EQUIVALENCES FOR SELF-INJECTIVE ALGEBRAS

By

Takayoshi WAKAMATSU

(Dedicated to Professor Hisao Tominaga on his 60th birthday)

Introduction.

The important notion of reflection functors was introduced into the representation theory of algebras by Bernstein-Gelfand-Ponomarev [8]. Those functors were defined only for hereditary tensor algebras given by quivers and species [12]. Then Auslander-Platzeck-Reiten [7] arranged the notion by non-diagramatic treatment so that it is possible to apply the concept for any algebras. Brenner-Butler [10] extended the Auslander-Platzeck-Reiten partial Coxeter functor and defined the tilting theory. Further, Happel-Ringel [15] generalized the Brenner-Butler tilting theory and studied tilted algebras.

We regard the tilting theory as a powerful method of deforming algebras and their module categories. A tilting functor, hower, is nothing but a Morita equivalence, for any self-injective algebra. Hence, it is natural to search for a way of applying the tilting theory to the study of self-injective algebras.

Let A be a basic indecomposable artin algebra. Denote by mod-A (resp. Amod) the category of all finitely generated right (resp. left) A-modules. Let D: mod- $A \rightleftharpoons A$ -mod be the ordinary duality functor. In the following, we shall consider the trivial extension self-injective algebra $R = A \bowtie DA$ defined as follows: R is $A \oplus DA$ as an additive group and its multiplication is given by $(a, q) \cdot (a', q') =$ $(a \cdot a', a \cdot q' + q \cdot a')$ for any $(a, q), (a', q') \in A \oplus DA = R$.

In the paper [19], Tachikawa started in the study of self-injective algebras R, and in [20], he has proved that $\underline{\text{mod}}\-R$ is equivalent to $\underline{\text{mod}}\-S$ $(S=B|\times DB)$ if A is hereditary tensor algebra and B is given by reflection procedure from A. Here $\underline{\text{mod}}\-R$ is the projectively (=injectively) stable category of mod-R in the sense of Auslander.

Let $e \in A$ be a primitive idempotent such that eA is simple non-injective and $\tau^{-1}eA \bigotimes_A DA = 0$, where τ^{-1} (resp. τ) denotes the Auslander-Reiten translation TrD (resp. DTr). By putting $T_A = (1-e)A \oplus \tau^{-1}eA$ and $B = \text{End}(T_A)$, the Auslander-Platzeck-Reiten partial Coxeter functor is defined to be the functor $\text{Hom}_A(T, ?)$:

Received September 20, 1984.