V-RINGS RELATIVE TO HEREDITARY TORSION THEORIES

By

Yasuhiko TAKEHANA

A ring R is called a right V-ring in case every simple right R-module is injective. Villamayor has characterized a right V-ring as one each right ideal of which is an intersection of maximal right ideals. The main purpose of this paper is to give torsion theoretical generalizations of right V-rings. Theorem 2 generalizes Theorem 2.1 in [6], stating that any simple module in \mathcal{T} is \mathcal{T} injective if and only if J(M)=0 holds for any M in \mathcal{T} , where \mathcal{T} denotes a class of modules closed under cyclic submodules, homomorphic images and extensions.

Applying Theorem 2 for the Goldie and the Lambek torsion theories, we obtain Corollaries 5 and 6. We consider in Corollary 5 a ring R (called a right V(G)-ring) for which every singular simple right R-module is injective, and in Corollary 6 a right V(L)-ring for which every dense right ideal is an intersection of maximal right ideals. We characterize V-rings in terms of V(G)-rings or V(L)-rings in Proposition 8 which is closely related to Theorem 8 in [7]. In Theorem 9 it is proved that commutative V(G)-rings turn out to be V-rings. In this connection two examples are given to show that neither commutative V(L)-rings nor V(G)-rings are V-rings.

Throughout this paper R is a ring with a unit, every right R-module is unital and Mod-R is the category of right R-modules. For a right R-module M, Z(M), E(M) and J(M) denote the singular submodule of M, the injective hull of M and the intersection of all maximal submodules of M. A right Rmodule M is called \mathfrak{T} -injective for a subclass \mathfrak{T} of Mod-R if $\operatorname{Hom}_{R}(-, M)$ preserves the exactness for every exact sequence of right R-modules $0 \rightarrow A \rightarrow B \rightarrow C$ $\rightarrow 0$ with $C \in \mathfrak{T}$.

LEMMA 1. A right R-module M is \exists -injective if and only if $\operatorname{Hom}_{R}(-, M)$ preserves the exactness for every exact sequence $0 \to I \to R \to R/I \to 0$ with $R/I \in \Im$, where \Im denotes a subclass of Mod-R closed under cyclic submodules and cyclic homomorphic images.

Received December 22, 1981. Revised June 10, 1982.