ON THE EXISTENCE OF WEIERSTRASS POINTS WITH A CERTAIN SEMIGROUP GENERATED BY 4 ELEMENTS

Ву

Jiryo KOMEDA

Introduction

Let X be a smooth, proper 1-dimensional algebraic variety (of genus ≥ 2) over an algebraically closed field k of characteristic 0, and let P be a point of X. Then a positive integer ν is called a gap at P if $h^0(X, \mathcal{O}_X((\nu-1)P)) = h^0(X, \mathcal{O}_X(\nu P))$, and G_P denotes the set of gaps at P. If we denote by N and H_P respectively the additive semigroup of non-negative integers and the complement of G_P in N, then H_P is a semigroup. A subsemigroup H of N whose complement is finite is called a numerical semigroup. The following problem is fundamental and is a long-standing problem.

Is there a pair (X, P) with X a smooth, proper 1-dimensional algebraic variety over k and P its point, such that $H=H_P$?

Using the deformation theory on algebraic varieties with G_m -action, Pinkham [7] constructed a moduli space \mathcal{M}_H which classifies the set of isomorphic classes of pairs (X,P) consisting of a smooth, proper 1-dimensional algebraic variety X together with its point P such that $H_P = H$. But he did not claim that \mathcal{M}_H is non-empty. Using the Pinkham's construction of \mathcal{M}_H , some mathematicians showed that for some H, \mathcal{M}_H is non-empty. To state their results we prepare some notation. Let $M(H) = \{a_1, \cdots, a_n\}$ be the minimal set of generators for the semigroup H, which is uniquely determined by H. I_H denotes the kernel of the k-algebra homomorphism $\varphi: k[X] = k[X_1, \cdots, X_n] \to k[t]$ defined by $\varphi(X_i) = t^{a_i}$ where k[X] and k[t] are polynomial rings over k, and $\mu(H)$ denotes the least number of generators for the ideal I_H . When we set $C_H = \operatorname{Spec} k[X]/I_H$, we denote by $T_{c_H}^1 = \bigoplus_{l \in \mathbb{Z}} T_{c_H}^1(l)$ the k-vector space of first order deformations of C_H with a natural graded structure. Moreover, g(H) and C(H) denote the cardinal number of the set N-H and the least integer c with $c+N\subseteq H$, respectively. Then \mathcal{M}_H is non-empty in the following cases:

- 1) H is a complete intersection, i. e., $\mu(H) = n-1$,
- 2) H is a special almost complete intersection (Waldi [10]),