ASYMPTOTIC RISK COMPARISON OF IMPROVED ESTIMATORS FOR NORMAL COVARIANCE MATRIX

By

Nariaki Sugiura and Masahiro Fujimoto

Asymptotic risks of the empirical Bayes estimators $\hat{\Sigma}_H$ by Haff [5] for a covariance matrix Σ in a *p*-dimensional normal distribution are computed and compared with that of James and Stein's minimax estimators $\hat{\Sigma}_{JS}$. For $p \ge 6$, it is shown that $\hat{\Sigma}_{JS}$ are always better than $\hat{\Sigma}_H$ asymptotically, though the leading terms are the same. New estimators which dominate $\hat{\Sigma}_{JS}$ for some Σ in any p asymptotically are proposed. Some numerical comparisons are given. Exact risks for ordinary estimators $\hat{\Sigma}_0$ and minimax estimators $\hat{\Sigma}_{JS}$ are also computed and compared with asymptotic ones for which the approximations are shown to be excellent.

1. Introduction

Let S have a Wishart distribution with unknown scale matrix Σ and *n* degrees of freedom, for which we shall write $S: W_p(n, \Sigma)$ and assume n > p+1. Let $\hat{\Sigma}$ be an estimator of Σ . The loss function is taken to be

(1.1)
$$L_1(\hat{\Sigma}, \Sigma) = \operatorname{tr} \hat{\Sigma} \Sigma^{-1} - \log |\hat{\Sigma} \Sigma^{-1}| - p$$

or

(1.2)
$$L_2(\widehat{\Sigma}, \Sigma) = \frac{1}{2} \operatorname{tr}(\widehat{\Sigma}\Sigma^{-1} - I)^2.$$

The L_1 loss is equivalent to the likelihood ratio statistic for testing the hypothesis $\Sigma = \Sigma_0$ against all alternatives. The L_2 loss can also be used as a test statistic for the same problem as in Nagao [10]. The factor 1/2 in the L_2 loss is not essential. However we wish to retain it, since L_1 loss tends to $tr(\hat{\Sigma}\Sigma^{-1}-I)^2/2$, when $\hat{\Sigma}$ is close to Σ . The risk function is given by $R_i(\hat{\Sigma}, \Sigma) = E[L_i(\hat{\Sigma}, \Sigma)]$ for i=1 or 2. Haff [5] proved that among the scalar multiples of S, the best estimator under L_1 is $\hat{\Sigma}_O^{(1)} = S/n$ and that under L_2 it is given by $\hat{\Sigma}_O^{(2)} = S/(n+p+1)$, which we call ordinary estimators. Then he considered the posterior mean of Σ for a prior distribution $W_p[n', (\gamma C)^{-1}]$ for Σ^{-1} with unknown scalar $\gamma > 0$ and known p. d. matrix

Received October 13, 1981. Revised February 15, 1982.